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Abstract 
The use of hardware description languages has moved digital systems design closer to 

computer science. Software engineering techniques are needed to manage complex designs. Deep 
sub-micron effects have made digital design more asynchronous and more analogue. Therefore 
there is a tension between high-level abstraction and low-level detail. In this paper, it is argued that 
we should increasingly teach digital design as if it were a form of software engineering and that 
the low-level effects must be estimated in the design tools. This is a challenge to universities, both 
in their teaching and in their research. 

1 Introduction 
In the past two decades, the world has “gone digital”. CDs have replaced vinyl records; 

digital photography has replaced film and television, radio and telephones have all become digital 
devices. Increasingly, therefore, electronic engineering has meant digital systems engineering. 
With the advance of digital technology has come a massive increase in complexity. Design tools 
have struggled to keep pace with this new complexity. Similarly, engineering education has found 
it difficult to stay in touch. 

Along with complexity another phenomenon has appeared. As the feature size of integrated 
circuits shrinks, gates and flip-flops behave less like synchronous digital devices and more like 
analogue components. It is now more correct to think of integrated circuits as transmission lines 
connected by switches and not as gates connected by equipotential wires. 

Thus, we have two conflicting pulls: on the one hand in order to control the complexity we 
need to describe digital hardware using software engineering techniques; while on the other we 
need to be familiar with electrical engineering principles in order to understand and control the 
sub-micron effects. 

In this paper, we will review the digital design curriculum as it has been taught. We will then 
examine what we can learn from computer science in order to teach the management of 
complexity. We will argue that to manage the non-synchronous, analogue features of deep sub-
micron design we need a new generation of design tools and a new curriculum for a new 
generation of electronics engineers. 

2 Digital System Design 1980-2000 
In most electronic engineering degree programmes digital design forms one of the main 

themes alongside analogue circuit design, programming and physical electronics. Here, we 
distinguish electronic engineering from electrical power engineering, in which there is an emphasis 
on machines and high voltages. In some institutions there was a move towards electronics in the 
decades before 1980. In others, such as the University of Southampton, electronic engineering has 
always been a distinct discipline. 

 



 

Through the 1980s, the digital design theme would have included topics such as: Boolean 
algebra; Boolean minimisation using Karnaugh maps; optimisation of logic in terms of TTL 
packages; state machines; state minimisation; and mapping to JK flip-flops. Depending on the 
institution these subjects would have been more or less theoretical, with perhaps an element of 
design and build in the laboratory. Related topics would have included computer architecture, 
including bus architectures and assembly language programming and integrated circuit design. 

By the mid-1990s, VHDL and Verilog were starting to appear, together with programmable 
logic. Thus topics such as TTL package minimisation and optimisation in terms of JK flip-flops 
became obsolete. By removing these topics, there was room in the curriculum to introduce RTL 
design, including synthesis and simulation. FPGAs made it possible for students to design much 
more complex systems. It was also realised that design for test is an important aspect of digital 
design and topics such as the single stuck fault model, scan path design and BIST could be 
included. 

The power of the design tools has revealed a difficulties however. At first glance (and to 
weaker students) a specification in VHDL is not that different to a C program. The design process 
has similarities to programming a PIC or other embedded processor: the “program” is compiled 
and downloaded onto an integrated circuit on a development board. Moreover, the complexity of 
both FPGAs and embedded processors means that it is impossible to debug either hardware or 
software designs in situ. Finally, we cannot simply give an FPGA or a processor with 100s of pins 
and operating at 2.2V or less to students and expect them to build circuits in the laboratory. 

Thus in practice digital systems design has become a branch of software engineering. 

3 Computer Science Lessons 
We can regret this transformation of the digital design process or we can welcome the change 

and seek to exploit it. So, what can we learn from computer science? 
The most significant change in computer science teaching in the last 20 years has been the 

evolution in computing languages. In 1980, computer science students would have been taught 
FORTRAN IV and possibly Lisp. Today students learn Java and C++. It is said that “real 
programmers can write FORTRAN in any language”! This is true, but good programmers can use 
the expressive power available in C++ to write shorter programs that achieve the same task. The 
key here is abstraction and management of complexity. It is relatively easy to map a FORTRAN 
program into assembler; it is almost impossible to do the same with a C++ program. 

It is not just the mainstream programming languages that have changed. Software 
management tools have made it easier for teams to develop programs – even simple tools such as 
makefiles allow programming tasks to be shared. Version control systems (RCS, CVS) allow 
changes to be tracked. C++ has vast libraries of functions that can easily be used to build 
sophisticated applications. Scripting languages (e.g. Perl) allow systems to be built from small 
components. 

Perhaps the most significant advance has been in the development of formal methods such as 
model checking. It is practically impossible to test for every combination of data; formal methods 
can be used to validate a specification against a final implementation. 

By analogy, digital hardware design, in the form of RTL synthesis, is still in the FORTRAN 
era. Software engineers no longer care exactly which machine instructions are executed, but digital 
hardware designers are obsessed with knowing exactly what flip-flops are created. IP reuse is 
talked about but seldom done. Ironically, many engineers are forced to learn Perl in order to make 
the EDA tools work. And formal methods are not mentioned in polite company! 

This situation cannot continue. There is a “design gap”. A consumer integrated circuit might 
remain in production for a few weeks, but might have taken several hundred man years to design. 

 



 

The current response of integrated circuit manufacturers is to export design to low wage 
economies, such as India and China. Thus the cost is kept low by reducing the cost per engineer. 
An alternative model is to increase the productivity of each engineer. The lessons of computer 
science suggest a way to achieve that objective.  

4 Electrical Engineering Tamed 
The argument for abstraction might be countered by observing that as devices get smaller the 

engineering problems get more difficult. As educators we can promote the use of software 
engineering tools. As researchers, however, we have new opportunities in trying to reconcile 
electrical engineering with computer science.  

At this point an example might be useful. A common problem in RTL design is that of timing 
closure. A designer wants to achieve a certain speed with minimal hardware costs. Speed versus 
area is the classic trade-off. In order to minimise area, resources are shared. In order to share 
resources, multiplexers must be included. Therefore, when synthesised the design does not meet 
the speed requirements. Hence, the shared resources are no longer shared, but this makes the 
design larger and the delays greater, due to longer wiring. Thus the speed gets worse, not better 
and thus timing closure is never achieved. 

The problem arises because the synthesis tool estimates performance only in terms of logic 
delays, not wiring delays. The solution, as implemented in so-called physical synthesis tools, is to 
estimate the wiring delay and to include this as a cost in the optimisation function. It is important 
to appreciate that, at this level, the wiring cost is estimated – it would be prohibitive to perform a 
full layout at each optimisation iteration. 

In a computer science view of synthesis, the physical effects are ignored. In an electrical 
engineering view, these effects dominate the design process, impeding abstraction. We need to 
tame the electrical engineering problem by producing relatively simple high-level models of the 
low-level effects. In the timing closure problem, this is done by generating a floorplan of the 
design and estimating typical and worst-case delays. We do not attempt to calculate exact delays. 
In fact this estimation has a second benefit: the floorplan is based on high-level information about 
the design, which is lost during synthesis. The floorplan can be passed onto low-level layout tools, 
allowing them to produce a better solution more efficiently. 

To date, relatively little work has been done in high-level estimation. In commercial tools, 
physical synthesis has been applied at RTL, but there has been research into using similar 
techniques at a behavioural level. Similarly, the cost of a design in terms of overall area, power 
and testability can be estimated at an early stage. Problems such as crosstalk and asynchronous 
communication could be designed out of a system at an early stage. We should, perhaps, think of 
this as architectural exploration rather than behavioural synthesis. Models and tools for performing 
these estimates and, importantly, for arbitrating between conflicting objectives are needed and 
could provide a fertile area for university research. Such tools would therefore allow us to control 
complexity. 

5 A Curriculum for Digital Systems Design 
It is not really possible to design a curriculum for digital systems design in isolation. In 

practice an electronic engineering degree should also include: Mathematics; Circuit Theory; 
Analogue Design; Computer Architecture; Programming; Solid-state Physics; Electro-magnetism; 
Communications; Signal Processing; and so on. Different countries have degrees of different 
lengths. Different institutions have different specialisations and structure their programmes in 
different ways. We can outline key topics that should be included in a digital systems design 
theme. 

 



 

In the first year, it is clearly necessary to introduce the basics: Boolean algebra; Karnaugh 
maps; gates; flip-flops; state machines and programmable logic. Laboratory exercises will include 
the use of simple programmable devices and hence require the use of languages such as Abel. 
There is a clear need for students to understand, from a practical point of view, the need for 
decoupling capacitors and the effects of sending pulses along transmission lines. 

In the second year, hardware description languages (VHDL, Verilog or SystemC) can be 
introduced. Coupled with this is the need to introduce students to simulation and RTL synthesis 
tools. Even though an FPGA can be easily reprogrammed, it should still be right first time, 
because it is almost impossible to access internal states for debugging. The principle of dividing a 
design into controller and datapath can be taught with all these subjects being assimilated through 
design exercises. Finally the idea of design for test should be introduced, together with the 
principles of test pattern generation. 

In the third and subsequent years, the level of abstraction can be moved upwards. At this 
point software tools (e.g. CVS) need to be introduced. Verification principles, particularly formal 
methods, and tools need to be explained. With the increasing complexity of systems on chip, the 
idea of a single, global clock is no longer tenable and design for asynchronous communications 
needs to be introduced. As we now no longer distinguish so rigidly between hardware and 
software, we can introduce the idea of hardware/software co-design. 

As high-level synthesis tools become more readily available, they need to be introduced into 
the curriculum. At first these will be university tools, suitable only for advanced courses. It is 
inevitable, however, that such tools will become industry standards and their use must be 
promoted in the teaching of digital design. 

6 Conclusions 
With increasing use of hardware description languages, digital design is starting to resemble 

software engineering. At present, tools and techniques do not fully support modelling and 
estimation of low-level electrical effects. As a result of industrial pressure and university research 
tools will emerge. It is only through the adoption of software engineering methods that the 
complexity of future generations of digital devices can be managed.  

Is digital design computer science or electrical engineering? Undoubtedly, the answer is that 
from the designers’ point of view, digital design will increasingly resemble computer science. We 
will still need, however, tool builders who understand electrical engineering and there will be 
occasions when the assumptions implicit in those tools break down. We still need therefore 
generations of fully rounded electronics engineers. 

 

 

 


