

Digital Design: Computer Science or Electrical Engineering?
Mark Zwolinski

Electronic Systems Design Group
School of Electronics and Computer Science

University of Southampton
Southampton SO17 1BJ, UK

mz@ecs.soton.ac.uk

Abstract
The use of hardware description languages has moved digital systems design closer to

computer science. Software engineering techniques are needed to manage complex designs. Deep
sub-micron effects have made digital design more asynchronous and more analogue. Therefore
there is a tension between high-level abstraction and low-level detail. In this paper, it is argued that
we should increasingly teach digital design as if it were a form of software engineering and that
the low-level effects must be estimated in the design tools. This is a challenge to universities, both
in their teaching and in their research.

1 Introduction
In the past two decades, the world has “gone digital”. CDs have replaced vinyl records;

digital photography has replaced film and television, radio and telephones have all become digital
devices. Increasingly, therefore, electronic engineering has meant digital systems engineering.
With the advance of digital technology has come a massive increase in complexity. Design tools
have struggled to keep pace with this new complexity. Similarly, engineering education has found
it difficult to stay in touch.

Along with complexity another phenomenon has appeared. As the feature size of integrated
circuits shrinks, gates and flip-flops behave less like synchronous digital devices and more like
analogue components. It is now more correct to think of integrated circuits as transmission lines
connected by switches and not as gates connected by equipotential wires.

Thus, we have two conflicting pulls: on the one hand in order to control the complexity we
need to describe digital hardware using software engineering techniques; while on the other we
need to be familiar with electrical engineering principles in order to understand and control the
sub-micron effects.

In this paper, we will review the digital design curriculum as it has been taught. We will then
examine what we can learn from computer science in order to teach the management of
complexity. We will argue that to manage the non-synchronous, analogue features of deep sub-
micron design we need a new generation of design tools and a new curriculum for a new
generation of electronics engineers.

2 Digital System Design 1980-2000
In most electronic engineering degree programmes digital design forms one of the main

themes alongside analogue circuit design, programming and physical electronics. Here, we
distinguish electronic engineering from electrical power engineering, in which there is an emphasis
on machines and high voltages. In some institutions there was a move towards electronics in the
decades before 1980. In others, such as the University of Southampton, electronic engineering has
always been a distinct discipline.

Through the 1980s, the digital design theme would have included topics such as: Boolean
algebra; Boolean minimisation using Karnaugh maps; optimisation of logic in terms of TTL
packages; state machines; state minimisation; and mapping to JK flip-flops. Depending on the
institution these subjects would have been more or less theoretical, with perhaps an element of
design and build in the laboratory. Related topics would have included computer architecture,
including bus architectures and assembly language programming and integrated circuit design.

By the mid-1990s, VHDL and Verilog were starting to appear, together with programmable
logic. Thus topics such as TTL package minimisation and optimisation in terms of JK flip-flops
became obsolete. By removing these topics, there was room in the curriculum to introduce RTL
design, including synthesis and simulation. FPGAs made it possible for students to design much
more complex systems. It was also realised that design for test is an important aspect of digital
design and topics such as the single stuck fault model, scan path design and BIST could be
included.

The power of the design tools has revealed a difficulties however. At first glance (and to
weaker students) a specification in VHDL is not that different to a C program. The design process
has similarities to programming a PIC or other embedded processor: the “program” is compiled
and downloaded onto an integrated circuit on a development board. Moreover, the complexity of
both FPGAs and embedded processors means that it is impossible to debug either hardware or
software designs in situ. Finally, we cannot simply give an FPGA or a processor with 100s of pins
and operating at 2.2V or less to students and expect them to build circuits in the laboratory.

Thus in practice digital systems design has become a branch of software engineering.

3 Computer Science Lessons
We can regret this transformation of the digital design process or we can welcome the change

and seek to exploit it. So, what can we learn from computer science?
The most significant change in computer science teaching in the last 20 years has been the

evolution in computing languages. In 1980, computer science students would have been taught
FORTRAN IV and possibly Lisp. Today students learn Java and C++. It is said that “real
programmers can write FORTRAN in any language”! This is true, but good programmers can use
the expressive power available in C++ to write shorter programs that achieve the same task. The
key here is abstraction and management of complexity. It is relatively easy to map a FORTRAN
program into assembler; it is almost impossible to do the same with a C++ program.

It is not just the mainstream programming languages that have changed. Software
management tools have made it easier for teams to develop programs – even simple tools such as
makefiles allow programming tasks to be shared. Version control systems (RCS, CVS) allow
changes to be tracked. C++ has vast libraries of functions that can easily be used to build
sophisticated applications. Scripting languages (e.g. Perl) allow systems to be built from small
components.

Perhaps the most significant advance has been in the development of formal methods such as
model checking. It is practically impossible to test for every combination of data; formal methods
can be used to validate a specification against a final implementation.

By analogy, digital hardware design, in the form of RTL synthesis, is still in the FORTRAN
era. Software engineers no longer care exactly which machine instructions are executed, but digital
hardware designers are obsessed with knowing exactly what flip-flops are created. IP reuse is
talked about but seldom done. Ironically, many engineers are forced to learn Perl in order to make
the EDA tools work. And formal methods are not mentioned in polite company!

This situation cannot continue. There is a “design gap”. A consumer integrated circuit might
remain in production for a few weeks, but might have taken several hundred man years to design.

The current response of integrated circuit manufacturers is to export design to low wage
economies, such as India and China. Thus the cost is kept low by reducing the cost per engineer.
An alternative model is to increase the productivity of each engineer. The lessons of computer
science suggest a way to achieve that objective.

4 Electrical Engineering Tamed
The argument for abstraction might be countered by observing that as devices get smaller the

engineering problems get more difficult. As educators we can promote the use of software
engineering tools. As researchers, however, we have new opportunities in trying to reconcile
electrical engineering with computer science.

At this point an example might be useful. A common problem in RTL design is that of timing
closure. A designer wants to achieve a certain speed with minimal hardware costs. Speed versus
area is the classic trade-off. In order to minimise area, resources are shared. In order to share
resources, multiplexers must be included. Therefore, when synthesised the design does not meet
the speed requirements. Hence, the shared resources are no longer shared, but this makes the
design larger and the delays greater, due to longer wiring. Thus the speed gets worse, not better
and thus timing closure is never achieved.

The problem arises because the synthesis tool estimates performance only in terms of logic
delays, not wiring delays. The solution, as implemented in so-called physical synthesis tools, is to
estimate the wiring delay and to include this as a cost in the optimisation function. It is important
to appreciate that, at this level, the wiring cost is estimated – it would be prohibitive to perform a
full layout at each optimisation iteration.

In a computer science view of synthesis, the physical effects are ignored. In an electrical
engineering view, these effects dominate the design process, impeding abstraction. We need to
tame the electrical engineering problem by producing relatively simple high-level models of the
low-level effects. In the timing closure problem, this is done by generating a floorplan of the
design and estimating typical and worst-case delays. We do not attempt to calculate exact delays.
In fact this estimation has a second benefit: the floorplan is based on high-level information about
the design, which is lost during synthesis. The floorplan can be passed onto low-level layout tools,
allowing them to produce a better solution more efficiently.

To date, relatively little work has been done in high-level estimation. In commercial tools,
physical synthesis has been applied at RTL, but there has been research into using similar
techniques at a behavioural level. Similarly, the cost of a design in terms of overall area, power
and testability can be estimated at an early stage. Problems such as crosstalk and asynchronous
communication could be designed out of a system at an early stage. We should, perhaps, think of
this as architectural exploration rather than behavioural synthesis. Models and tools for performing
these estimates and, importantly, for arbitrating between conflicting objectives are needed and
could provide a fertile area for university research. Such tools would therefore allow us to control
complexity.

5 A Curriculum for Digital Systems Design
It is not really possible to design a curriculum for digital systems design in isolation. In

practice an electronic engineering degree should also include: Mathematics; Circuit Theory;
Analogue Design; Computer Architecture; Programming; Solid-state Physics; Electro-magnetism;
Communications; Signal Processing; and so on. Different countries have degrees of different
lengths. Different institutions have different specialisations and structure their programmes in
different ways. We can outline key topics that should be included in a digital systems design
theme.

In the first year, it is clearly necessary to introduce the basics: Boolean algebra; Karnaugh
maps; gates; flip-flops; state machines and programmable logic. Laboratory exercises will include
the use of simple programmable devices and hence require the use of languages such as Abel.
There is a clear need for students to understand, from a practical point of view, the need for
decoupling capacitors and the effects of sending pulses along transmission lines.

In the second year, hardware description languages (VHDL, Verilog or SystemC) can be
introduced. Coupled with this is the need to introduce students to simulation and RTL synthesis
tools. Even though an FPGA can be easily reprogrammed, it should still be right first time,
because it is almost impossible to access internal states for debugging. The principle of dividing a
design into controller and datapath can be taught with all these subjects being assimilated through
design exercises. Finally the idea of design for test should be introduced, together with the
principles of test pattern generation.

In the third and subsequent years, the level of abstraction can be moved upwards. At this
point software tools (e.g. CVS) need to be introduced. Verification principles, particularly formal
methods, and tools need to be explained. With the increasing complexity of systems on chip, the
idea of a single, global clock is no longer tenable and design for asynchronous communications
needs to be introduced. As we now no longer distinguish so rigidly between hardware and
software, we can introduce the idea of hardware/software co-design.

As high-level synthesis tools become more readily available, they need to be introduced into
the curriculum. At first these will be university tools, suitable only for advanced courses. It is
inevitable, however, that such tools will become industry standards and their use must be
promoted in the teaching of digital design.

6 Conclusions
With increasing use of hardware description languages, digital design is starting to resemble

software engineering. At present, tools and techniques do not fully support modelling and
estimation of low-level electrical effects. As a result of industrial pressure and university research
tools will emerge. It is only through the adoption of software engineering methods that the
complexity of future generations of digital devices can be managed.

Is digital design computer science or electrical engineering? Undoubtedly, the answer is that
from the designers’ point of view, digital design will increasingly resemble computer science. We
will still need, however, tool builders who understand electrical engineering and there will be
occasions when the assumptions implicit in those tools break down. We still need therefore
generations of fully rounded electronics engineers.

