Dr Milunka Damnjanovic, red.prof,
Projektovanje VLSI

Sabira

¢

Addition / Subtraction

Review addition schemes and various speedup methods
o Addition is a key op (in itself, and as a building block)
e Subtraction = negation + addition
o Carry propagation speedup: lookahead, skip, select, ...
e Two-operand versus multioperand addition

Topics in This Part

Basic Addition and Counting

Carry-Lookahead Adders

Variations in Fast Adder
Multioperand Addition

BASIC ADDITION AND COUNTING

Chapter Goals

Study the design of ripple-carry adders,
discuss why their latency is unacceptable,
and set the foundation for faster adders

Chapter Highlights

Full adders are versatile building blocks
Longest carry chain on average: log,k bits
Fast asynchronous adders are simple
Counting is relatively easy to speed up

Basic Addition and Counting: Topics

Topics in This Chapter

1. Bit-Serial and Ripple-Carry Adders

2. Conditions and Exceptions

3. Analysis of Carry Propagation

4. Carry Completion Detection

5. Addition of a Constant

6. Manchester Carry Chains and Adders

X b% C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Ly

HA

S

I

Half-adder (HA): Truth table and block diagram

Inputs Outputs
T Y G| w7
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

!

FA

Cin

£

Full-adder (FA): Truth table and block diagram

Half-Adder Implementations
. — X C X
' —C— y @ y
. r y . @ y
(a) AND/XOR half-adder. (b) NOR-gate half-adder.
CH =T
Ch—C
S |7 - —Yy

(c) NAND-gate half-adder with complemented carry.

C

Full-Adder Implementations
y X y X

|

HA G

o

s
(a) Built of half-adders.

Yy X

Mux \{ ¥

o

\{ N4 S
s
|
= o— |
! 0<]_'O<ﬁ (b) Built as an AND-OR circuit.
3
s
(c) Suitable for CMOS realization. Possible designs for a full-adder in terms

of half-adders, logic gates, and CMOS
transmission gates.

Full-Adder Implementations

«—X ——e—X
C w [0 plimaa
out -) F Y
HA e ¢ Cout N
- ®
S l _C ®
(@) FA built of two HAs
r ’ »
y ®
o——®
o0 Oj« ®
1 1 jCo—o L
Cout | 2 2 o ®
31 3
N
—o Cj,
C. v
in S
Sy
(b) CMOS mux-based FA (c) Two-level AND-OR FA

(alternate version) Possible designs for a full-adder in terms of half-
adders, logic gates, and CMOS transmission gates.

Some Full-Adder Detalls

Logic equations for a full-adder:
S = X®y®dc, (odd parity function)
= Xycin Vv X’ylcin Vv X'ycin’ Vv Xy'Cin'

Cout = XYV XCy,VYC, (majority function)
7 y ‘w
N ey I
X0 TG

z
- I Jﬁ P
N‘ TG X1 TG
(@) CMOS transmission gate: (b) Two-input mux built of two
circuit and symbol transmission gates

CMOS transmission gate and its use in a 2-to-1 mukx. 9

Simple Adders Built of Full-Adders

Y Using full-adders in building
X bit-serial and ripple-carry
—
Shift X; Yi adders.
A v
Ci+1 Ci
Carry «— FA -
FF Shift
+ _—
Clock S, | ,| | S
(a) Bit-serial adder.
>J<,31 }131 T }11]io)10
C32 C31 Co C1 Co
<+ FA [€— = = « <+ FA [« FA [<—
Cout l l l Cin
S32 S31 Sq So

(b) Ripple-carry adder.

10

VLSI Layout of a Ripple-Carry Adder

X3 Y2 X2 Y1 X1 Yo Xo

I I I I F—1 b Yooy

7 inverters _Vss

C3 C2 C1 TWo Gn |1500
D .] 4-t0-1 D
MuX's Tclock L
SZI S1I S0I

>

760\

The layout of a 4-bit ripple-carry adder in CMOS
Implementation [Puck94].

11

Critical Path Through a Ripple-Carry Adder

Tripple-add = TFA(X’y_)Cout) + (k — 2)XTFA(Cin_)COUt) + TFA(Cin_)S)
T—l Yk-1 1k-2 Yk-2 11 &ll T }io
Ck Ck-1 Ck-2 C2 C1 Co
~---4— FA |[¢— FA [¢&— ... ¢ FA [FA <
i Cout Cin
' ' I I I
Sk Sk-1 Sk—2 S1 So

Critical path in a k-bit ripple-carry adder.

12

Binary Adders as Versatile Building Blocks

X y
Set one input to O: C.ut = AND of other inputs L l
Set one input to 1: C.ut = OR of other inputs 1 FA e
out n
Set one input to O L
and another to 1: s = NOT of third input 4
Bit 3 Bit 2 Bit 1 Bit O
0 1 w 1 Z 0 y X
C C C C C
4 3 2 1 0
W Xyz W V' XyZ XyZz Xy 0
v v v
(Wv xyz)

Four-bit binary adder used to realize the logic function f

=W + Xyz and its complement. s

2 Conditions and Exceptions

Yk-1 Xk-1 Yk-2 Xk-2 Y1 X1 Yo Xo
. | Ck1| | . . || .
k k—2 2 1
Cout o—| FA FA — - — FA FA
7
Overflo_wg(\
Negative
®
Zero_<€
Sk_1 Sk-2 S1 S0

Two’s-complement adder with provisions for
detecting conditions and exceptions.

overflow,s compl = X1 Yier Sker’ v X1’ Yot Skt

overflow, comp = Ck @ C g = € Cyy' vV C Cy

Gin

14

Saturating Adders

Saturating (saturation) arithmetic:

When a result’'s magnitude is too large, do not wrap around;
rather, provide the most positive or the most negative value
that is representable in the number format

Example — In 8-bit 2’s-complement format, we have:
120 + 26 - 18 (wraparound); 120 +_,, 26 - 127 (saturating)

Saturating arithmetic in desirable in many DSP applications

Designing saturating adders

Adder 0
Unsigned (quite easy) 1

Signed (only slightly harder) Overflow """ F

Saturation value

15

3 Analysis of Carry Propagation

Bit positions
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

Carry chains and their lengths

Example addition and its carry propagation chains.

(o]

Using Probability to Analyze Carry Propagation

Given binary numbers with random bits, for each position | we have

Y4 (both 1s)
Y4 (both 0s)
Y, (different)

Probability of carry generation
Probability of carry annihilation
Probability of carry propagation

Probability that carry generated at position i propagates through
position j — 1 and stops at position j (j > 1)

2-(-1) x 1/2 = 2-(-)
Expected length of the carry chain that starts at position i
2 _ 2—(k-i-1)

Average length of the longest carry chain in k-bit addition is strictly
less than log,k; it is log,(1.25Kk) per experimental results

Analogy: Expected number when rolling one die is 3.5; if one rolls
many dice, the expected value of the largest number shown grows

17

4 Carry Completion Detection

Xi Yi F XitY

bk Di+1 . @C b; bo = cCip,

Xi Yi

Xi TYi

Ck = Cout o Ci+1 r@(Co = Cin
Ci

Xi Yi
di+1@
aIIdong 1 }From other bit positions

Example addition and its carry propagation chains.

C

O Carry not yet known
1 Carry knownto be 1
0O Carry known to be O

b
0
0
1

18

5 Addition of a Constant; Counters

l L Data in
' Mux Y/e------ Count / Initialize
Reset Clear
Clock ----q------------ » Countregister [¢-------=- Enable

« Load
+1,(-1 }—

T~——
Counter *\\ Incrementer/
overflow Cout _(Decrementer)
X+1
(x — 1) v Data out

An up (down) counter built of a register, an
Incrementer (decrementer), and a multiplexer.

19

—

Ck

Implementing a Simple Up Counter

Xk-1

Sk-1

Sk-2

Count Output
/\

|

|—o

.

y ?

(Fm arch text) Ripple-carry incrementer for use in an up counter.

4

J

J

Q2

.

J

Xo

Y

So

Increment

4_

Four-bit asynchronous up counter built only of negative-edge-

triggered T flip-flops.

20

Faster and Constant-Time Counters

Any fast adder design can be specialized and optimized to yield
a fast counter (carry-lookahead, carry-skip, etc.)

One can use redundant representation to build a constant-time
counter, but a conversion penalty must be paid during read-out

Count register divided into three stages

/\

2

1| Load T —+ 1|
\V4 6 AV4
Incrementer Incrementer
Control

<

—] | oad
-

v

o

Control
1

Fast (constant-time) three-stage up counter.

Increment

21

6 Manchester Carry Chains and Adders

Sum digit in radix r SS = (Xx+y,+c)modr

Special case of radix 2 S = X@y ec

Computing the carries c; is thus our central problem
For this, the actual operand digits are not important
What matters is whether in a given position a carry Is

generated, propagated, or annihilated (absorbed)
For binary addition:

9 = XY, Pi =X @Y, a =Xy, =vy)
It is also helpful to define a transfer signal:

t=gvp = a = XVvy,

Using these signals, the carry recurrence is written as
Ch1=GiVCP = GiVvCO VP = gV

22

Manchester Carry Network

The worst-case delay of a Manchester carry chain has three components:

1. Latency of forming the switch control signals
2. Set-up time for switches

3. Signal propagation delay through k switches VbD

0 —[
Cis1 (pool— Ci Clit1 —_r—Ci
i
1L 1L

T

0 i

0
a gi
]/O T{O Clock

LogicO0 Logic1l

IC

X Vss
(@) Conceptual representation (b) Possible CMOS realization.

Fig. 5.13 One stage in a Manchester carry chain.

23

Carry Network is the Essence of a Fast Adder

i P;| Carryis: X Y,
0 | annihilated or killed g =X, Y,
1
0
1

propagated _
generated \ Pi = X; D Yi

(impossible)

Yk-2 P2 9i11Piv1 190 [P g,p,
]
P . PR CO

Carry network

| " Ripple: Skip:
i Cil | = - g Lookahead,;

0 .
Ci\q ? ‘1 Parallel-prefix
o

(Fm arch text) The main part of an adder is the carry network. The rest
IS Just a set of gates to produce the g and p signals and the sum bits.

24

CARRY-LOOKAHEAD ADDERS

Chapter Goals

Understand the carry-lookahead method
and its many variations used in the design
of fast adders

Chapter Highlights

Single- and multilevel carry lookahead
Various designs for log-time adders
Relating the carry determination problem
to parallel prefix computation
Implementing fast adders in VLSI

25

Carry-Lookahead Adders: Topics

Topics in This Chapter

1. Unrolling the Carry Recurrence

2. Carry-Lookahead Adder Design

3. Ling Adder and Related Designs

4. Carry Determination as Prefix Computation

5. Alternative Parallel Prefix Networks

6. VLSI Implementation Aspects

26

1 Unrolling the Carry Recurrence

Recall the generate, propagate, annihilate (absorb), and transfer signals:

Signal Radix r Binary
of IS1iffx,+y,>r X Vi
o] IsSliffx,+y,=r—-1 X; DY,
t ISliffx,+y,>r—-1 Y AVAY
S (X;+y;+¢c)modr X @y, @ ¢

The carry recurrence can be unrolled to obtain each carry signal directly
from inputs, rather than through propagation

i — Uit VCi1Pig
=01 V(92 vV CiaPin) Pig
= 0i-1 V UioPi1 VvV G PiaPig
=0i-1 V 0i2Pi1 VvV O3 Pio Pic Vv Gz Pz Pia Pig
=01 vV 9i2Piia V Uiz PiaPict V Gia Pig Pi2Pica vV Cia Pica Picg Pi2 Pica

C

27

x
W
<
w

Full Carry Lookahead

Xy Yo

X1 Y1

Xo Yo

A AL AA A “‘

Al

A

A

Al

YY VY

Yv v

s,

s

Theoretically, it is possible to derive each sum digit directly

from the inputs that affect it

Carry-lookahead adder design is simply a way of reducing

the complexity of this ideal, but impractical, arrangement by

hardware sharing among the various lookahead circuits

28

Four-Bit Carry-Lookahead Adder

Complexity

carry-out

iIndirectly

reduced by C4L_ @C
deriving the

~(_

_

-

Full carry lookahead is quite practical

for a 4-bit adder

J> V1P, vV GuP1P2 VvV CyPe PP

9o Vv CoPo C
91V QoP1 VvV CoPoPy " _@C
C

O3V 0O,P3VvVO:PP3V GpgP1P2P3 —
v CoPopipops o — ¢

Co
Four-bit carry network with
full lookahead.

Carry Lookahead Beyond 4 Bits

Consider a 32-bit adder

Ci1 = GoVCyPo
Co = 01V JoP1V CyPoP
C3= 0,V O1P2VuP1P2 Vv CyPeP1P2
32-input AND
C31= 30V J29P30 V 928 P29P30 V 927 P28 P29P30 vV - - - VvV CyPaP1P2P3 -+ P2gP3g

_ High fan-ins necessitate
32-input OR tree-structured circuits

30

Two Solutions to the Fan-in Problem

High-radix addition (i.e., radix 2"

Increases the latency for generating g and p signals and sum digits,
but simplifies the carry network (optimal radix?)

Multilevel lookahead

Example: 16-bit addition
Radix-16 (four digits)
Two-level carry lookahead (four 4-bit blocks)

Either way, the carries c,, cg, and c,, are determined first

Ci6 C15 C14 C13 C35 €43 G Gy Cg C;, Cg C; C, C; C, C; Cy

P P P
cout . . . Cin

31

2 Carry-Lookahead Adder Design

Block generate and propagate signals
9ii+31= Yis3 V Qir2Pirz V Gir1 Piv2 Pixz V Qi Piv1 Pis2 Pixs
Prii+31= Bi Piv1 Piv2Pis3

C C

C. i+ i+
|+3<_ I 2‘ I 1<_
G+3Pi+3| Yi+2Pi2 | Gix1 Pis1| G P;

4-bit lookahead carry generator [«@——

vy

Onii+a] Prijies)

Schematic diagram of a 4-bit lookahead carry generator.

A Building Block for
Carry-Lookahead Addition

Four-bit
lookahead
carry generator.

Pii+a]

-

-
e
-

C4L J
-@C Py
———————— gS
Cy | (
(pz\\\
Four-bit
/ adder C %
c, _@(Py
\\\\ glllll
\\\\\ //p/o
~= %

v

Block Signal Generation
Intermediate Carries

’
’

i+3 -
/

Pi+3

Gi+3

Pis2

gi+2

Pi+1

/

gi+1 /
,
/

,gi

33

Combining Block g and p Signals

J1

Io

10

Iy

Block generate and

propagate signals

can be combined In
Cj, 41 i1 | |Cigh the same.way as bit
- > - g and p signals to
form g and p signals
giP gip g|p gip for wider blocks
\A 4 vy \A SN A / N
|
4-bit lookahead carry generator 4—0

Combining of g and p signals of four (contiguous or
overlapping) blocks of arbitrary widths into the g and p

signals for the overall block [ig, Js].

34

A Two-Level Carry-Lookahead Adder

C8

v

g[8,11]
P [8.11]

< [ey

4-bit lookahead carry generator

@71 L91[03]
P pﬁ]

16-bit
Carry-Lookahead
Adder

C12
c Car ci6| 9 112.15]
¢« Ot ip [1235]
U148,63] 9132,47] O116,31] 4 9(0,15]
Pl48,63] P [32,47] P [16,31] P [0,15]
\4
4-bit lookahead carry generator <
910,63] - . .
P [0,63] Building a 64-bit carry-lookahead adder from 16 4-bit
adders and 5 lookahead carry generators.
Carry-

. —_— — 4
out: Cout = Gpok-1y v CoProka = XkeaYier V Sker (Kt V Yien)

35

Latency of a Multilevel Carry-Lookahead Adder

Latency through the 16-bit CLA adder consists of finding:

g and p for individual bit positions 1 gate level
g and p signals for 4-bit blocks 2 gate levels
Block carry-in signals c,, cg, and c,, 2 gate levels
Internal carries within 4-bit blocks 2 gate levels
Sum bits 2 gate levels
Total latency for the 16-bit adder 9 gate levels

(compare to 32 gate levels for a 16-bit ripple-carry adder)
Each additional lookahead level adds 4 gate levels of latency

Latency for k-bit CLA adder: Tiookanead.add = 4 l0g,k + 1 gate levels

36

3 Ling Adder and Related Designs

Consider the carry recurrence and its unrolling by 4 steps:
Ci =01V Cialiy
=01 vV Oiotig V Oistinotlig VvV Oiatiglinotig vV Gttt ot

Ling’s modification: Propagate h, = ¢, + ¢,_, instead of c;

hy =04 vhigtis,
=01 VOV OstiovOiatisti s vt tiat,
CLA: 5 gates max 5 inputs 19 gate inputs
Ling: 4 gates max 5 inputs 14 gate inputs
The advantage of h, over c; is even greater with wired-OR:
CLA: 4 gates max 5 inputs 14 gate inputs
Ling: 3 gates max 4 inputs 9 gate inputs

Once h, is known, however, the sum is obtained by a slightly more
complex expression comparedto s, = p; ® ¢,

sS=t®h,)vhot,,

37

4 Carry Determination as Prefix Computation

Block B' " "

BIockB"< > J P
<—j> g’
- 0 0 vy ,
z L P
(9", p") (9,p) —
IRl

< Block B > (©.P) g P

Combining of g and p signals of two (contiguous or overlapping) blocks B'
and B" of arbitrary widths into the g and p signals for block B.

38

Formulating the Prefix Computation Problem

The problem of carry determination can be formulated as:

Given (9o, Po) (91, P) - - - (G2 Pr2) (91 Pr1)
Find (9100 Poo) Do+ Pro)) - - - Qrokzr» Proxz) Doy s Prok-ap)

C, C, . Cp 1 C,

Carry-in can be viewed as an extra (—1) position: (g_;, p_;) = (c,., 0)

The desired pairs are found by evaluating all prefixes of
(9o Po) ¢ (91 P) ¢ . . . ¢ (G2 Pr2) ¢ (9ins Pra)

—»

»
»

»
»

The carry operator ¢ is associative, but not commutative
[(91; P1) ¢ (92, P2)] € (93, P3) = (91, P1) € [(9z: P2) ¢ (3, P3)]

»
»

Prefix sums analogy:
Given Xg Xy X, C X1
Find Xg XotX; XgtX +X, C Xo+X +... X 4

39

Example Prefix-Based Carry Network
6 -1 2 5

Four-input

®
] prefix sums
] network

Scan " 7]
R et L L e R e e R e e e e e e g P
order
Js P3 J2, P2 J1, Pq Jo: Po
(¢ Four-bit
Carry
t/////// lookahead
network

v
90,3 Pos1 Yo.21 P2 o1 Poar po.or Proygl
- (C4, --) - (C3, --) - (sz --) - (C1’ --)

40

5 Alternative Parallel Prefix Networks

X1 = Xks2 Xk|/2—1 Xlo
L

Prefix Sums k/2 Prefix Sums k/2

CK%IM S
k/2

Sk-1 "+ S

Parallel prefix sums network built of two k/2-input
networks and k/2 adders. (Ladner-Fischer)

Delay recurrence D(k) = D(k/2) + 1 = log,k
Cost recurrence C(k) = 2C(k/2) + k/2 = (k/2) log,k

The Brent-Kung Recursive Construction

Xk-1 Xk=2 SR X3 Xo X1 Xp

& & &

Prefix Sums k/2

Y |y

Sk-1 Sk=2 Co S3 52 31 Sg

Parallel prefix sums network built of one k/2-input
network and k — 1 adders.

Delay recurrence D(k) = D(k/2)+2 = 2 log,k—1 (-2 really)
Cost recurrence C(k) = C(k/2) + k—1 =2k -2 —log,k

42

Brent-Kung Carry Network (8-Bit Adder)

[7,7] [6,6] [5,5] [4,4] [3,3] [2,2] [1,1] [O,0]

ot

0,7] [0,6] [0,5] [0,4] [0,3] [0,2] [0,1] [O,0]

911,1] Pr1,1]

J0,0]
vYY P[0,0]

——®
—

90,1] P[o,1]

43

Brent-Kung Carry Network (16-Bit Adder)

Xie X5, X

Level
1
Reason for 5
latency being

\4_

Brent-Kung N
parallel prefix >
graph for

16 inputs. 6

S

15 "14 "13

(

\

b

7

Y

«

S, S

15 714 "13

S

(

S

5

\

X0 X1 X0 %9 Xg X,

\

N\

S

812 11 710 79

X. X

5 % % N X K

6

(

b

7

N\

(

)]

Kogge-Stone Carry Network (16-Bit Adder)

Cost formula

C(k) = (k-1)
+ (k- 2)
+(k—-4)+...
+ (k — k/2)

= klog,k —k +1

log,k levels
(minimum
possible)

Kogge-Stone
parallel prefix
graph for
16 inputs.

X15 %14 %13 %12 Xy Xpp X9 X X, X5 X

\
\“\

<

(

o

C

X

N
NS

A\

A)
<\ B
A)
N\

NN\

A\ >
AN

e

X

S

S

/
/
/

X

i\ N\
AN

o W\

@
()
‘\
O\

!
‘\
'\
\‘:

W‘\
\OF
0}
\O§
\@
‘\
5
@

AN

S \ANSN
ANON
AN

AN
AN

f
(O

S

S;5S,. S,.S

15 °14°13 ®12 511 51959 Sg S; Sy S

A
A

@
@

A\

AN

% 5%

AP

NI N

AN XA
\

NN

e
=

Speed-Cost Tradeoffs in Carry Networks

Method Delay Cost

Ladner-Fischer |log,k (k/2) log,k

Kogge-Stone log,k kKlog,k —k+1

Brent-Kung 2 log,k — 2 2k — 2 —log,k

Xk-1 -+ Xk Xep-1 -0 X
Improving the | | | o |
Ladner/Fischer _ _ These outputs can
design Prefix Sums k/2 | |Prefix Sums k/2 | be produced one
time unit later without

Sk-1

+ Sk2

k-1 """ Sp

increasing the overall
latency

This strategy saves enough to make
the overall cost linear (best possible)

46

Hybrid B-K/K-S Carry Network (16-Bit Adder)

X5 X14%13 X% X10%0 e X X X5 X Xy X X X% %15 X Xag X Xy XpoXg Xg X Xg X5 Xy X3 X Xp X

Level
1

AN

NO:
N
\\‘\».

W

2

Brent-Kung: . o1 d
6 levels [T Lo

PR

$15 514513 S12 513 51959 Sg S; Sg S5 S4 S3 Sy S g S15 514513 512 815 S19Sg Sg S7 Sg S5 Sy S3 S, S §y

Xis X4 %3 X2 X1 X% X% X% X5 X5 X X X X X

oifeilel feiloilits:
J

\OARN
\0

1 4 levels
49 cells

21| Kogge-Stone:

O

A Hybrid ’ ! ' !

Brent-Kung/) S |
Kogge-Stone 7] ERB Kogge- Hybrid:
parallel prefix T sone 5 |evels

32 cells

graph for Q//QC

16 inputs. / / v
Brent-
PIPICIPIPIPIP] | T

S15 514513 512513 S105¢ Sg S; Sg S5 S, S3 S, S S

47

6 VLSI Implementation Aspects

Example: Radix-256 addition of 56-bit numbers
as implemented in the AMD Am29050 CMOS micro

Our description is based on the 64-bit version of the adder
In radix-256, 64-bit addition, only these carries are needed:

Cse Cus Ca0 Cso Coy Ci6 Cg

First, 4-bit Manchester carry chains (MCCs) of Fig. 6.12a are
used to derive g and p signals for 4-bit blocks

Next, the g and p signals for 4-bit blocks are combined to form
the desired carries, using the MCCs in Fig. 6.12b

48

Four-Bit Manchester Carry Chains

PH2

PH2 PH2
93 o J3 & &
PH2 1|
= = - = [~ oy
L — —

" I[* 3 | * PH2 IE‘* PH2 o
T L & L 1 P 002
! ! L, o P ,

"2 I[* 2 | * PH2 IE‘* PH2 o2

91— 9, & &

T L L = et
gt T ey — ’

Py ICy Py i) — ;f* - Plo.a]

gO PH2 gO _b_ _r
L — 910,31 = -]
= T — —

P iy Po ICA
PH2 ,
| _% Ji Plo,3] PH2|5* oz | *

(a) (b)
Example four-bit Manchester carry chain designs in CMOS
technology [Lync92].

49

Carry Network for 64-Bit Adder

Level 1 Level 2 Legend: [i, j] represents the
"""" i_ [60, 63] - [48, 63] pair of signals p il and g il
— [56,59] -| Type-b [~ [48,59]
E— [52,55] 1 MCC [48, 55] — Level 3
148,517 L [48, 55] [-1, 55] —» Cq
i— [44, 47] [32, 47] [32,47] Type-b 1t [-1,471—>Cyg
“— 1[40, 43] 4 Type-b 1~ [32, 43] —— [16,31] MCC [-1, 31]
16 :— [36,39]—-{ MCC [32, 39] [-1, 15]
Type-a | 13235171 (32, 39] — [-1,39) —C 4
MCC +— 28 31] [16,31] —®T— [16,31] | Type-b [[-1,31]—>C3p
blocks i_ (24,271 Type-b - [16, 27] [16,23] -] MCC [-1, 23] —*C»,
— [20,23]| MCC [16,23] — @— [-1, 15]
— [16, 19]]
— [12, 15] — [-1, 15] ® »C 16
— [8,11] [-1, 11]
— 4,7 Tyhﬁgg’* [-1,7] »Cq
_______ — [0,3] T
[-1, -1]
in r ;CO

Spanning-tree carry-lookahead network [Lync92]. The 16 MCCs
at level 1, that produce generate and propagate signals for 4-bit
blocks, are not shown.

50

VARIATIONS IN FAST ADDERS

Chapter Goals

Study alternatives to the carry-lookahead
method for designing fast adders

Chapter Highlights

Many methods besides CLA are available
(both competing and complementary)

Best design is technology-dependent
(often hybrid rather than pure)

Knowledge of timing allows optimizations

51

Variations in Fast Adders: Topics

Topics in This Chapter

1. Simple Carry-Skip Adders

2. Multilevel Carry-Skip Adders

3. Carry-Select Adders

4. Conditional-Sum Adder

5. Hybrid Adder Designs

6. Optimizations in Fast Adders

1 Simple Carry-Skip Adders

Ci6 , - -
< 4-Bit C12 4-Bit 'Cg 4-Bit Cy4
Block 4 Block Block
(a) Ripple-carry adder.
C16 - . -
4-Bit C12 4-Bit Cs 4-Bit < Cq
Block Block < Block
— 1 p[12,15] — 1 p[8,11] — p[4,7]
Skip Skip Skip

3

2

1

Ripple-carry stages

C
04—0

C
ole—=

(b) Simple carry-skip adder.

™

Skip logic (2 gates)

Converting a 16-bit ripple-carry adder into a simple carry-skip
adder with 4-bit skip blocks.

53

Another View of Carry-Skip Addition

O4j+3 P4

£l<£rC

Caj+4

I_

+3

C4j+3

g4j +2 p4' +2

Paj+1 04 Pa4;

One-way street «—

Freeway

Street/freeway analogy for carry-skip adder.

54

Carry-Skip Adder with Fixed Block Size

Block width b; k/b blocks to form a k-bit adder (assume b divides k)

Tfixed-skip-add = (b_l) + 05 + (Wb—Z) + (b_l)

in block 0 OR gate skips in last block
~ 2b + k/b — 3.5 stages
dT/db = 2-k/b?=0 = bort = Vk/2

Tort = 2V2k — 3.5

—

Example: k =32, bort =4, Toprt= 125 stages
(contrast with 32 stages for a ripple-carry adder)

55

Carry-Skip Adder with Variable-Width Blocks

b1 b2 by bo Block widths
Carry path (1
— y path (1)
Carry path (2)
Carry path (3)
Carry-skip adder with variable-size blocks and three —— Ripple

sample carry paths.

The total number of bits in the t blocks is k:

2[b + (b + 1) +

o+ (b+tU2-1)] = tb+t4—1/2) = k
b = kit—t/4 + 1/2

Tiarskipadd = 2(0—1)+0.5+t-2 = 2kt +t/2-2.5
dT/db = —2k/t2+1/2=0

L ek

Topt = 2k — 2.5 (a factor of \2 smaller than for fixed-block)

56

2 Multilevel Carry-Skip Adders

c

out C.

S, S, S, S, S,

Schematic diagram of a one-level carry-skip adder.

C

out C.

S

Example of a two-level carry-skip adder.

C out

S, Si Si

So

Two-level carry-skip adder optimized by removing the short-block
skip circuits. 57

Designing a Single-Level Carry-Skip Adder

Example 1

Each of the following takes one unit of time: generation of g, and p,,
generation of level-i skip signal from level-(i—1) skip signals, ripple, skip,
and formation of sum bit once the incoming carry is known

Build the widest possible one-level carry-skip adder with total delay of 8

C;“t be-— bs ba b3 b by —Ibo —C(;“
7 6 5 4 3 42 |2
S1 S1 Sy S1 S1

Fig. 7.6 Timing constraints of a single-level = Max adder width = 18
carry-skip adder with a delay of 8 units. (1+2+3+4+4+3+1)

Generalization of Example 7.1 for total time T (even or odd)
1 2 3 ... T2 T2 ... 4 3
1 2 3 ... (T+L/2 ... 4 3 1

Thus, for any T, the total width is (T + 1)2/4] -2

58

Designing a Two-Level Carry-Skip Adder

Example 2

Each of the following takes one unit of time: generation of g, and p,,
generation of level-i skip signal from level-(i—1) skip signals, ripple, skip,
and formation of sum bit once the incoming carry is known

Build the widest possible two-level carry-skip adder with total delay of 8

Tproduce—I |— T assimilate

8.1y {72} 16, 3} {5, 4} {4,5} 3.8}

oty be bo be bs_ | bl
8 7 6 5 4 43 |3 Max adder width = 30
—52 2 52 >2 S2j— (4+8+8+6+3+1)

(a)

| FIBlock B— Block b—+— Block C——+——— Block B——+ Block A

Two-level carry-skip adder with a delay of 8 units: (a) Initial
timing constraints, (b) Final design. -

Elaboration on Two-Level Carry-Skip Adder

Example 2

Given the delay pair {B, o} for a level-2 block in Fig. 7.7a, the number
of level-1 blocks that can be accommodated is y = min(B—1, o)
a

Cout o] ba_z b2 by bo Cin
—L a-1 flo-2 3 2 | 1 0
S1 Sq S1 Sq S1 Sy S1
Single-level carry-skip adder with T, qimijate =
C ci

out |‘ bB—3 b2 b]_ bO m

P ‘ p- ‘ p-2 4 3 2 I
S1 S1 S1 S1 Sy S, S

Single-level carry-skip adder with T, 4,ce = B

Width of the ith level-1 block in the level-2 block characterized by {3, o}
Is b, =min(B —y +1i+ 1, a —1); the total block width is then >._;,,. 4 b

60

Carry-Skip Adder Optimization Scheme

Block of b full-adder units

Level-h skip

Generalized delay model for carry-skip adders.

61

Carry-Select Adders

k-1 k/2 k-1

a4

r

k/2-bit adder [T

T k/2-bit adder j@
1| Kk/2-bitadder H1 1

k/2

High k/2 bits Low k/2 bits

Carry-select adder for k-bit numbers built from

three k/2-bit adders.

Cselect-add(k) = 3Cadd(k/2) +k/2+1

Tselect-add(k) = Tadd(klz) +1

62

Multilevel Carry-Select Adders

k-1 3k/4 3k/4 -1 k/2 ki2-1 k/4 k/d -1 0
| o 0 0 c
k/A-bitadder <17 111 k/4-bit adder 1 k/A-bitadder [7 k/4-bitadder <«
| :
| :
K4+l 4~ KA L KA ATk KA+ A kiA+1 A k4
| |
vy :
) :
4 |

\V v
oy A N od
ux ux Ck/4

l I ______
]
* |
A 4 |
\ M % —————— e
ux Cyr2

¢, .., High k/2 bits Middle k/4 bits Low K/4 bits

Two-level carry-select adder built of k/4-bit adders.
63

4 Conditional-Sum Adder

Multilevel carry-select idea carried out to the extreme (to 1-bit blocks.
C(k) = 2C(k/2) + k+2 = k (log2k + 2) + k C(1)
T(k) = T(k/2) +1 = log2k + T(1)

where C(1) and T(1) are the cost and delay of the circuit of Fig. 7.11
for deriving the sum and carry bits with a carry-in of 0 and 1

Yi Xi
Bl K + 2 is an upper bound on
< (" number of single-bit 2-to-1
—e .
multiplexers needed for

. —e combining two k/2-bit adders
\ ’ Into a k-bit adder

‘ <] rg(l Fig. 7.11 Top-level
Si

112

block for one bit position of

Ci Si C; it
i+1 i+1 a conditional-sum adder.

Forci=1 Forc;=0
64

Conditional-Sum
Addition Example

Conditional-sum
addition of two 16-
bit numbers. The
width of the block
for which the sum
and carry bits are
known doubles
with each
additional level,
leading to an
addition time that
grows as the
logarithm of the
word width k.

X ojojriofojrj2(0j2j12|j2(0j2 10|12 |0
y oji({ofof1j0j1j12|0j210j1211212 101
Block Block Block sum and block carry-out
width carry-in 1514 1312 1110 9 8 7 6 5 4 3 2 1 0
1 0 S oji{1{of1j1j0j12j2|0j12121011 11 1
C ojojofofjojoji1jojojp1|0j0121010 10
1 S 1|j0j0o(1|0|0f1 (00|12 |0 01 |O (O
Cc o110 j|2 1222121222112 |11
2 0 S 01101 1|01j002 1101111
C 0 0 0 1 1 0 1 0
1 S 1011|001 0010010
C 0 0 1 1 1 1 1
4 0 S 0110/0001|00110111
C 0 1 1 1
1 S 011100100100
c 0 1 1
8 0 S 0111000101 000111
C 0 1
1 S 01110010
C 0
16 0 S 0111001001000111
C 0
1 s |i
C

Cdut

65

Cin

5 Hybrid Adder Designs

The most popular hybrid addition scheme:

Lookahead Carry Generator

Carry-Select
. 0

11

/

0
1

uyg
Cout ¥

/

HIO

Muyg

:

NMux /g

:

A hybrid carry-lookahead/carry-select adder.

66

Any Two Addition Schemes Can Be Combined

C48

C32

Other possibilities:

C16

C12

C8

C4

‘9?2_!15] ‘9;,111] g:,—lﬂ
12,15 p[8,1|1] IO[4,7|]

v

d0,3]
Proa

4-Bit Lookahead Carry Generator

hybrid carry-select/ripple-carry
hybrid ripple-carry/carry-select

(with carry-out)

L 16-bit Carry-Lookahead Adder

Example 48-bit adder with hybrid ripple-
carry/carry-lookahead design.

67

6 Optimizations in Fast Adders

What looks best at the block diagram or gate level
may not be best when a circuit-level design is
generated (effects of wire length, signal loading,...)

Modern practice: Optimization at the transistor level

Variable-block carry-lookahead adder

Optimizations for average or peak power
consumption

Timing-based optimizations (next slide)

68

Optimizations Based on Signal Timing

So far, we have assumed that all input bits are presented at the same
time and all output bits are also needed simultaneously

Latency from inputs
in XOR-gate delays

15T
10T
5 ——
Bit Position
0 + + +
0 20 40 60

Example arrival times for operand bits in the final
fast adder of a tree multiplier [Oklo96].

69

MULTIOPERAND ADDITION

Chapter Goals

Learn methods for speeding up the
addition of several numbers (needed

for multiplication or inner-product)

Chapter Highlights

Running total kept in redundant form
Current total + Next number — New total

Deferred carry assimilation
Wallace/Dadda trees and parallel counters

70

Multioperand Addition: Topics

Topics in This Chapter

1. Using Two-Operand Adders

2. Carry-Save Adders

3. Wallace and Dadda Trees

4. Parallel Counters

5. Generalized Parallel Counters

6. Adding Multiple Signed Numbers

Some applications of multioperand addition

c o o c o e o o o (0)

x ®e © o o ;a(® © © ©e o o B(l)

__________ ® e © o ©o o p(z)

® ©e ©o o X0a20 ® © © © © o p(3)

® ©e © o)(_I. 321 ® © © © o o p(4)

e © o o)(2a22 ® © © © o o p(5)

® ©e © o X3a23 ® © © ©e o o p(6)
:_:_:_:_:_:_:_:_ p ® © © © © © © o o S

Multioperand addition problems for multiplication or inner-
product computation in dot notation.

72

Serial Implementation with One Adder

> k +1og, n bits j_1
/

()
> Adde 7 > 20X

Partial sum
register

Serial implementation of multi-operand addition
with a single 2-operand adder.

T = O(nlog(k + log n))

serial-multi-add

= O(nlog k + n log log n)

Therefore, addition time grows superlinearly with n when k is fixed
and logarithmically with k for a given n

Pipelined Implementation for Higher Throughput

Problem to think about: Ignoring start-up and other overheads, this
scheme achieves a speedup of 4 with 3 adders. How is this possible?

x(i6) + x(i-7)
x(-D)
Ready to

compute Delays

Delay | X+ XU |‘|:H:|‘> >
ﬁ]—» >
L »

0) w(i-8) + 3(i-9) 4 y(i-10) 4+ y(i-11)

5 (i-12)

x(i-4) + x(i-5)
Fig. 8.1 Serial multi-operand addition when each
adder Is a 4-stage pipeline.

74

Parallel Implementation as Tree of Adders

th tk 4

k ’fk +k +k 4k

Adder

Adder

Adder

k+1\ /(k+1
1

n —

Adder

adders

+2\\ / k+2

i
[log,n]|

Adder adder levels

Adding 7 numbers in a binary tree of adders.

T

tree-fast-multi-add

T

tree-ripple-multi-add

O(logk +logk +1) +. .

.+ log(k +[log,n|-1))

O(log nlog k + log n log log n)

O(k +

log n)

[Justified on the next slide]

75

Elaboration on Tree of Ripple-Carry Adders

+k 4k +k gk pk 4k 4k t+1 t;;/ t t
[Adder | [Adder | [Adder] A ' 4
FA i
<t+_2 € —|HA| Leveli
t+2
" e Level i+1
(- - evel I+

T = O(k + logn)

tree-ripple-multi-add —

Ripple-carry adders at levels i and i + 1 in the tree of
adders used for multi-operand addition.
The absolute best latency that we can hope for is O(log k + log n)

There are kn data bits to process and using any set of computation
elements with constant fan-in, this requires O(log(kn)) time

We will see shortly that carry-save adders achieve this optimum time

76

2 Carry-Save Adders

A ripple-carry adder
turns into a
carry-save adder if the
carries are saved
(stored) rather than

propagated.

Cm} Carry-propagate adder

e o
Cout

Carry-save adder (CSA)

(3; 2)-counter

Carry-propagate adder (CPA) and
carry-save adder (CSA) functions in

dot notation.

3-to-2 reduction circuit

))

Full-adder ./:/:)<:/:/:/. Half-adder

Specifying full- and half-
adder blocks,

with their inputs and
outputs, in dot notation.

77

Multioperand Addition Using Carry-Save Adders

Tcarry-save-multi-add = O(tree height + TCPA) CSA CSA
= O(log n + log k) \\ /
Ccarry-save-multi-add = (n _ 2)CCSA + CCPA CSA /
Input \
| [npe CSA
CSA / /
—] | Sum register CSA
— | Carry register
CPA Carry-propagate adder
Output
Serial carry-save addition Tree of carry-save adders reducing

using a single CSA. seven numbers to two.

78

Example Reduction by a CSA Tree

:::::: 8 7 6 5 4 3 2 1 O Bit position
e oY 7 7 7 7 7 7 6x2=12 FAs
o 6 6 6 0 O
o 00 0iiele 2 5 5 5 5 5 3 6 FAs
ceeccece 3 4 4 4 4 4 1 6 FAs
A Lz e
2 0 0 0 0 0 -DIT adder
¢ o s s
00600 0 --Carry-propagate adder--
6 FAs
1 11 1 1 1 1 1 1
et gttt e
o & 0 0 0 o .
ceccee Representing a seven-operand
o addition in tabular form.
e s ee
o 0 0 0 o
> /. /. PR 4 FAs + 1 HA
s s s s o e A full-adder compacts 3 dots into 2
-DIt adder . .
00000000 (compression ratio of 1.5)

Total cost = 7-bit adder + 28 FAs + 1 HA
A half-adder rearranges 2 dots

Addition of seven 6-bit (no compression, but still useful)

numbers in dot notation.

79

Width of Adders in a CSA Tree

[0, k-1] [0, k-1] [0, k-1] [0, k-1]

[0, li—ll | | [0,|'<—1] | [0.k=1]1 Adding seven k-bit
_ : numbers and the
k-bit CSA k-bit CSA CSA/CPA widths required.
[1, K] [0, k-1] [1, K] [0, k-1]
k-bit CSA

» e Due to the gradual
[1, K] [0, k=1] retirement (dropping out)

of some of the result bits,

k-bit CSA _
CSA widths do not vary
2, k+1]\ [1.K /IL k1] much as we go down the
: tree levels
The index pair k-bit CSA
E J] means that [1, k+1]
oy ey o

are involved. k-bit CPA
|;2 | [2, k+1] 1 0

80

3 Wallace and Dadda Trees

| |n| mpUtS | | The maximum number n(h) of inputs
for an h-level CSA tree
o | h nh) | h nh h n(h)
\ / h Ievels
0 2 7 28 14 A74
1 3 8 42 15 711
2 4 9 63 16 1066
2 outputs 3 6 10 94 17 1599
4 9 11 141 18 2398
h(n) =1 +h(2n/3]) 5 13 | 12 211 | 19 3597
n(h) =[3n(h - 1)/2] 6 19 13 316 20 5395

2x1.5M1< n(h) <2x1.5" n(h): Maximum number of inputs for h levels

81

Example Wallace and Dadda Reduction Trees

. o &6 06 06 0 °
sesess Wallceree
00000 Reduce the ::::::
. o igiigige number of EEERE
:::::: operanc_isat © 6666 e
12ras the earliest P
et possible “eseee
oo vee opportunity 00000
o & 06 06 0 o
......GFAS e © 0 0 0 o
/.//.//.//. 11 FAs
e o ie s :/E/. Dadda tree: cees e o
0o 00 00 ¢ Fac Postpone the c/:/:/:/:/:/’
o 0 0 0 0 0 reduction to the o e 000 F
“o oo e :/: extent possible '/:/.: e :/:(
4 FAs + 1 HA ; i 4 FAs + 1 HA
° ® o without causing 7o e o
AR 7-bit adder added delay A 7-bit adder
O 6 6 ® 0 06 06 0 O O 6 © 6 06 60 0 0 O
Total cost = 7-bit adder + 28 FAs + 1 HA Total cost = 7-bit adder + 28 FAs + 1 HA
Addition of seven 6-bit Adding seven 6-bit numbers

numbers in dot notation. using Dadda’s strategy.

82

A Small Optimization in Reduction Trees

o0 000 0 - ® 6 06 0600
ceocee e Adding seven ©ce0o0o0ooe
: o000 @
LR 6-bit numbers T eesoos
ZEEEX by taking cc oo e e
c oo advantage of ceo0coe
6 FAs the final adder’s o 9 9 0 0 0 °
o/(o/ccr‘/. carry-in. (:::f:.
o0 000 0 oo 0000
o0 000 0 o000 00
o000 00 oo 0000
®o & & & 0 ©o 11 FAs ./././. ° 11 FAs
0o o000 ce s o
.0:003: /:/:/:/:/:/’
o o o o o e b 6 FAs + 1 HA

./:/:/:/:/:/:/o i ./:/:/:/’./:x:/'

o & 0 o 3 FAs + 2 HA
e 0 0 0 0 o o ATIMA :X:/:/:/:X::.
c s s s s o s
7-bit adder 7-bit adder
O 6 6 6 6 6 6 0 O O 6 6 6 6 60 60 0 O
Total cost = 7-bit adder + 28 FAs + 1 HA Total cost = 7-bit adder + 26 FAs + 3 HA

Adding seven 6-bit numbers
using Dadda’s strategy.

83

4 Parallel Counters

1-bit full-adder = (3; 2)-counter : FA FA FA 0
® 000 e Wlo 1[0 1]Jo
® o000 ®
® o000 °
o0 ®
./:/:/:/. ® FA FA
o . _ | o o[Tt 1] |0
Circuit reducing 7 bits to their : —
3-bit sum = (7; 3)-counter HA
® _ 11
o g | 3-bit
° o o FA > ripple-carry
® ° 25 adder
: o ”
oo o o000 3T . 0 —
Circuit reducing n bits to their
[log,(n + 1) -bit sum A 10-input parallel counter also known

= (n: rlogz(n + 1)1)-counter as a (10; 4)-counter.

84

5 Generalized Parallel Counters

| oo o0 ® 00000
Multicolumn :: ® O ® 060 0 0 O
reduction o0 ® O ® 6 6 06 0 o

o0 o0 e 060 0 0 0
o0 ® 0600 00
oo oo 00 oo
./'/'/' oo oo oo oo

(5, 5; 4)-counter Dot notation for a (5, 5; 4)-counter and the
use of such counters for reducing five

numbers to two numbers.
Unequal

columns

AN

Gen. parallel counter = Parallel compressor

(2, 3; 3)-counter

85

A General Strategy for Column Compression

One circuit slice

n inputs
(n; 2)-counters
P |li-r i—2 -3
Toi+1 <):i|wl . v
Toi+ 2 <::i|\412 7 |W2
Toi+ 3 <::i|\|13 // |\|;3

N+y, +y,+yz+... < 3+2y, +4y, +8y;+...
N—-3 < y,+3y,+7y;+...

Example: Design a bit-slice of an (11; 2)-counter
Solution: Let’s limit transfers to two stages. Then, 8 <y, + 3y,
Possible choices include vy, =5, y,=10ry, =y, =2

86

6 Adding Multiple Signed Numbers

—————————— Extended positions ---------- Sign Magnitude positions ---------
X1 X1 X1 X1 X1 X1 X2 Xy—3 X4
Yi-1 Yi-1 Yi-1 Yi-1 Yi-1 Yi-1 Yi—2 Yi—3 Yi-a
Zyq Zyq Zyq Zyq Zyq Zyq Zy o Zy 3 Zy 4

(a) Using sign extension

—————————— Extended positions ---------- Sign Magnitude positions ---------
1 1 1 1 0) Xi_1 Xi_o Xi_3 Xi_a
Yichk, Y2 Yies Y4
Z, ., Z V4 V4
_h = _ + 1 — k—1 k—2 k-3 k—4
b=(1-b)+1-2 ‘

(b) Using negatively weighted bits
Adding three 2's-complement numbers.

87

Comparisons

88

Adders:

* Ripple carry adder

e Carry Look ahead adder
o Carry Select adder

o Carry Skip adder

e Carry Save adder
 Manchester Carry Chains
 Variable Skip adder

e Brent-Kung adder

« Kogge-Stone adder

o Sklansky adder

 ELM adder and many more...

89

Adder Delay Comparisons

/A
o o CSkip-A

- VSkip-A

4 CCSel-A
VCSel-A

- 2CLA 4bCLA

-@-2b B&K

8 bits 16 bits 32 bits 48 bits 64 bits

Adder Area Comparisons

>
/s

/S
-

- _—

—-RCA
~- Manchester

—4- CCSkip-A
VCSkip-A

-5~ CCSel-A

-o-CLA

A= B&K
- ELM-(prefix)

16 bits

32 bits

l

64 bits

91

Adder Average Power

Comparisons

=4-RCA
- MCC
CCSkA
VCSKA
===CCSIA
--(CLA
=4=B&K
-o—ELM

16 bits

32 bits

64 bits

92

100

75

50

25

PDP of Different Adders

8 bits 16 bits 32 bits 48 bits 64 bits

PDP: power delay product

How to do fast Arithmetic?

-+-RCA
MCCA
-4 CSkA
VSkKA
> CSIA
o-CLA
——BKA
o-ELMA

93

94

