

4. Simulation algorithms

 4.1. Analog engine

 The use of modified nodal analysis (MNA) [Ho75] enables separation of
the modeling process from the mathematical apparatus used for simulation.
Contribution of each analog component to the system of equation is determined as
the model “stamp”. In a behavioral simulator, model (i.e. stamp) can be defined by
the user. On the other hand, the simulation algorithms are preprogrammed in a
simulation engine. Alecsis have SPICE-like simulation algorithms implemented. In
particular, we have used Gear methods for numerical integration of ordinary
differential equations [Gear71], Newton-Raphson method for nonlinear equations,
and modified Berry’s algorithm for solving system of equations characterized by
sparse matrices [Berr71].

 The user should not be aware of particular algorithms in the simulation
engine when describing the model. However, the numerical integration of

Alecsis - the simulator

26

differential equations and the linearization of nonlinear equations are performed in
the stamp description. Therefore, the modeling procedure cannot be quite
independent from the algorithms in the simulation engine. However, we have tried
to hide the algorithms of the simulation engine from the model designer. For
instance, user can invoke operators ddt and d2dt2 when he wants to describe
differential equations. The method for numerical integration would be then invoked
automatically. The same concept can be found in other analog hardware description
languages [Getr89, Kazm92, Pabs95].

 We will describe here shortly the algorithm of time advancing in the
analog engine. This is important, since this algorithm has to be synchronized with
the time-control of a discrete-event simulator. The analog simulation time is driven
by the local truncation error (LTE) of the numerical integration method. This LTE
is calculated after obtaining the convergence for one time instant. When the LTE is
smaller than the allowed limit, the analog solution is accepted and the relation
between LTE and the allowed limit is used to determine the new integration step
(new simulation time). If the LTE is larger than the limit, the solution is discarded,
and the simulation is repeated for a shorter time-step (backtracking in time). That
shorter time step is again calculated on the basis of LTE value. Therefore,
backtracking in the analog simulator is possible, but not more than for one time
step.

 4.2. Discrete-event engine

 The logic simulation engine of Alecsis simulator uses the data structures
built up by the compiler to propagate events through the digital nets - signals. An
event represents a change in the value of a signal. When an event on a signal
occurs, processes that are sensitive to that signal are activated. Each process that
assigns states to a signal creates a driver for that signal. The driver is a time-
ordered linked list that contains information of future events on a signal in the form
of (time, state) pairs. Well-known inertial and transport delay mechanisms [Lips89]
are used in assigning the future events to the driver. A signal can have more than
one driver in which case the resolution function is needed to resolve the signal
state. It is user's responsibility to provide the resolution function (applying
preferred resolution strategy) and attach it to the signal that has more than one
driver. In addition to events that convey updates in signal values, the logic
simulation machine of Alecsis simulator also processes the control events imposed
by the synchronization signals (initial, per_moment, final, ...) at appropriate
moments during the simulation.

4. Simulation algorithms

27

 All events scheduled to occur in the future (relative to the current
simulation time) are said to be pending and are maintained in a time-ordered linked
list called the global event list (GEL). Besides the time of the event, an entry to the
GEL contains the pointer to the signal driver that store the particular event
information. GEL is used by the algorithm for advancing the time. The current time
is the time of the first GEL entry. Simulation proceeds by processing all events
queued at the current time (deleting them from the queue after processing) and then
moving to process events at the next time in the GEL. Simulation ends when the
GEL is empty or when user specified simulation duration is exceeded. When the
process execution results in scheduling an event with zero propagation delay, the
"delta delay" is used - this event is processed in the next simulation cycle, but the
simulation time remains the same.

 The changes in the values of the primary input signals are defined using
initial processes. All the events defining the applied stimuli are inserted in the
global event list and primary input signals drivers before the simulation. Clock
generators can be defined that periodically insert events during the simulation.

 Logic simulation algorithm consists of initialization and simulation phases.
Initialization phase assumes activation of all processes and evaluation of states of
all signals. Process activation is automatic, as well as the assigning the default or
user defined values to the signals, but further initialization procedure must be built
in the circuit model by the designer. The simulation phase assumes propagation of
events from primary inputs and internal clock generators to the outputs of the
circuit. Both phases use the same event handling procedures that can be divided
into two basic operations:

 1) evaluation of the new logic state of the signal and

 2) execution of the activated process.

 Before assigning the new state to the signal, the simulation machine
applies the resolution function if the particular signal has more than one driver. If
there is a change in signal state, the signal state is updated and its fan-out list is
followed to determine the activated processes. When executed, in the next step,
processes assign the new events to some signals. Those events are scheduled in
drivers and GEL, and simulation proceeds by taking the next event from the GEL.

 4.3. Hybrid simulation

 For the mixed-signal simulation, analog and discrete-event engines should
be connected into one simulation engine. There are two aspects of this connection:

Alecsis - the simulator

28

• signal conversion (A/D or D/A) (mixed-signal simulation) and

• time synchronization of analog and discrete-event engines (mixed-mode
simulation)..

 4.3.1. A/D and D/A interfaces

 A net to which both analog and digital components are connected is called
hybrid net. After the compiler had built all the data structures representing the
simulated circuit, Alecsis detects and eliminates hybrid nets. In order to make
distinction between analog and digital portion of the circuit, simulator
automatically inserts interface circuits called analogue to digital (A/D) and digital
to analogue (D/A) converters. Models of interface circuits are part of system model
and are closely related to the digital modules as described earlier.

Fig. 4.1: Automatic A/D and D/A converter insertion for hybrid net to

which both inputs and outputs of digital modules are
connected.

 A/D converter is inserted where an input of a digital module is connected
to a hybrid node. D/A converter module is inserted where an output of a digital
module is connected to a hybrid node. If there are both digital modules inputs and
outputs connected to a hybrid node, both types of converters are inserted as
illustrated in Fig. 4.1 [Nich92]. A possible A/D module structure for CMOS logic
gates is shown in Fig. 4.2. The gate input is seen from the analog portion of the
circuit as an input capacitance, while module cmos_a2d assigns new states to the
digital output signal when the value of analog node crosses the defined thresholds.
A/D converter module is parametrized in terms of threshold voltages and input
capacitance. A simple model of D/A module for CMOS logic gate output is shown
in Fig. 4.3. The gate output impedance is modeled by an RC circuit, while the
signal transfer is expressed by a current source controlled by the logic states at the

4. Simulation algorithms

29

digital output. The interface is parametrized in terms of the output impedances and
transition times. An 'X' (unknown) state from the logic circuit cannot be mapped
directly into voltages, currents or impedances. The D/A converter module can be
parametrized to convert an 'X' to '0', '1' or the previous determinate state.

Fig. 4.2: Simple A/D converter model for CMOS gates. Input

capacitance of CMOS gate is inserted at the analog side, and
digital events are transmitted to the digital side when analog
variable crosses the specified thresholds.

 In order to produce a smooth ramp from the previous logic state to the new
one, the converter should start generating the ramp before the actual event occurs.
Since it is not possible in logic simulation machine to backtrack the current
simulation time, digital modules are bound to assign events to the hybrid nets 1/2
of the ramp duration time (transition time) before it actually occurs. Therefore, it is
necessary that the transition time (parameter of the converter) is a member of the
model card of the digital module. This advocates the used model class inheritance
concept described earlier. Detection if the net has a hybrid character is provided by
the signal attribute hybrid.

Alecsis - the simulator

30

 if (y->hybrid)
 y <- a&b after this->delay(a&b, y) -
 this->get_trans_time() / 2.0;
 else
 y <- a&b after delay;

Fig. 4.3: Simple D/A converter model for CMOS gates. The output of

CMOS gate is modeled with output resistance and
capacitance, while its driving capability is modeled with
current source controlled by the gate output logic state.

 After inserting converter modules, digital and analog portions of the circuit
can be separately simulated.

 4.3.2. Initialization

 The initialization phase in the mixed-signal circuit concerns both digital
and analog part. Simulation of analog circuits requires a consistent initial state,
otherwise the whole analysis may fail. Since analog simulation cannot cope with
unknown state, the simulator performs initialization in the following manner:

 1) Firstly, initialize the digital portion, i.e. compute the initial values of
signals.

 2) Than, execute a DC operation point computation in analog portion.

 Thanks to modeling capabilities of AleC++, it is possible to include into
digital modules the initialization mode as well as the normal operational mode.
Initialization of digital part of the circuit is performed by the zero-delay logic

4. Simulation algorithms

31

simulation. To assure that zero delay is used while digital part settles in a stable
state, user can check current simulation time (control parameter now), as in the
next example.

 if (now==0.0s) { // initialization mode
 out <- a & b after 0.0s;
 }
 else { // normal operational mode
 out <- a & b after delay_func(out, a & b, trise, tfall);
 }

 If digital simulation agent fails to initialize some signals that are needed for
analog part initialization due to unknown input states that comes from analog part
of the circuit, different initialization strategies can be applied, but those strategies
depend on modeler and cannot be automated.

 4.3.3. Time control mechanism

 As we have described above, analog and logic simulation engines have
completely different mechanisms of advancing the time. When a mixed-signal
simulator is implemented, these two algorithms should be unified. In our
implementation, the analog engine is the main one, it behaves also as a
synchronization agent. When it is necessary, the analog engine invokes the
discrete-event engine (Fig.2.1). The usual LTE-driven time algorithm of the analog
engine is modified to allow for synchronization with the discrete-event engine:

• If the logic event is waiting to be executed in a particular time in the event list,
analog simulation time cannot advance over that time. That means, analog time
step would be shortened to match the time instant when the logic event
happens. In that time instant, both engines are active (iteratively, if necessary,
until all logic events for that time instant are executed).

• When the analog engine solves given time instant, that solution can give
conditions for generating a logic event. However, the actual time instant when
the analog value passes the threshold is not known precisely, since the analog
time step is finite [Brow91]. For that reason, this analog time step can be
discarded and the time step shortened. In this way, time-instant when the given
analog value passes the threshold, i.e. when the logic event is generated on
A/D node can be found with better accuracy.

Alecsis - the simulator

32

 Therefore, in mixed-signal simulation, logic engine is not responsible for
advancing the time. When necessary, the analog engine invokes the logic engine to
execute one delta-cycle of events in a given time-instant.

