
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 5.  Application notes 
 
 

Introduction 
 
 During the development, Alecsis was constantly verified on a large number 
of different examples. Also, it was used in some real projects, where different 
electronic circuits have been designed. We will give here some of the typical 
simulation examples where Alecsis is presented as a circuit and system (mixed-
domain) simulator, used in different analogue, discrete-event and mixed-signal 
applications. 

 The first example is an analog multiplier, where Alecsis is used as a circuit 
simulator, i.e. equivalently as SPICE. SPICE compatibility is enabled through the 
usage of similar syntax rules and same syntax of model card. In the next two 
examples of SC filter and switching flyback converter, Alecsis is used also as a 
circuit simulator. Nevertheless, an ideal switch model that is a peculiar feature of 
Alecsis is used there. Such simulations cannot be so easily performed in other 
circuit simulators. 

 After that, five examples are given that depict analogue modeling features 
of AleC++. Firstly, a representation of MOS transistor modeling using neural 
network is given. After that, example of fuzzy-logic control system is presented. 
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Variables used there for modeling are not only of electronic, but also of very 
abstract nature. An example of control system modeling using transfer functions is 
given after that. Later on, example of electromechanical system modeling is 
presented through a nonlinear electromagnetic circuit. As a last example of 
analogue modeling features of Alecsis, a pressure sensing system is used. In this 
electromechanical simulation, space-continuous models, i.e. partial differential 
equations, are described in AleC++. 

 Ninth and tenth example in this section are of discrete-event simulation. In 
the systolic array circuit, AleC++ is used for modeling of logic circuits. After that, 
in LAN network simulation, models of more abstract discrete-event systems are 
described. 

 Three examples of mixed-mode and mixed-signal simulation are also 
presented. For A/D converter simulation, analogue and logic circuitry are coupled. 
In the next example, sigma-delta modulator is simulated, which is considered to be 
one of the benchmark tests for mixed-mode simulation. The last example of this 
group is pressure sensor simulation, with analogue readout circuitry and analog 
signal conversion into a discrete value. Therefore, in this example mixed-domain, 
mixed-signal and mixed-mode simulation is performed. 

 In discrete-event system modeling, Alecsis is able to support not also 
AleC++, but also VHDL. The last example in this chapter gives such AleC++ / 
VHDL co-simulation. 

 In the examples throughout this chapter some characteristic parts of model 
code are given. They are used just to illustrate usage of the modeling language 
AleC++. For learning the syntax of the language, Alecsis User's Manual is 
available. 
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 5.1.  Analogue multiplier simulation 
 
 The common way of analog systems modeling is structural description that 
stands for coupling of components with links and definition of components' 
parameters. As an example of pure structural description, the analog multiplier 
shown in Fig. 5.1 will be considered. It consists of 19 MOS transistors, and has the 
following functional blocks: pre-distortion circuit, voltage controlled current 
source, and two differential stages. Multiplier output is between nodes 18 and 19. 

 Multiplier is described structurally in a way that circuit elements are first 
declared: 
 
 
 resistor r1,r2; 
 

 
meaning that components r1 and r2 are resistors. It is also possible to use implicit 
declaration: 
 
 
 implicit { resistor r; capacitor c; } 
 

 

 
Fig. 5.1: Analog multiplier with MOS transistors 

which means that all elements beginning with r are resistors, and all ones 
beginning with c are capacitors. 
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 After declaring the components to be used, structural description of the 
multiplier is similar to SPICE circuit description. Nodes where the component is 
plugged are given in parenthesis, and parameters (including the name of the model 
card) are given afterwards. A part of the code describing the multiplier is given that 
shows the instantiation of an MOS transistor. 
 
 
 mp2 (11,10,0,0) { model=PC_PM1; w=1.7u; l=1.2u; 
        ad=150p; as=100p; pd=10p; ps=10p; } 
 

 

 Of course, the model card PC_PM1 must be defined earlier in the simulation 
library. It has the same syntax as SPICE MOS model, so it will not be described in 
details here. 

 To demonstrate the simulation of the multiplier depicted in Fig. 5.1, two 
sine wave signals with different frequencies are brought to its inputs. Multiplier 
output is an amplitude-modulated signal. The simulation results are given in Fig. 
5.2. 

Fig. 5.2:  Results of analog multiplier simulation 
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 5.2.  SC filter 
 
 This example also employs only structural description. The circuit shown 
in Fig. 5.3 contains switches, therefore the ideal switch, an Alecsis built-in 
component, is used. It should be noted that a truly ideal switch is used, with 
resistance zero for closed switch and infinite resistance for open switch [Mr~a93] 

 The parameters val_on and val_off determine voltages that turn switch on 
and off, respectively. There is another parameter hyst that defines switch with 
hysteresis if set on 1. The switch description requires four nodes: the first two are 
topological information of switch position in the circuit, and last two are 
controlling nodes. The double switch from Fig. 5.3 is described as a module named 
Double_Switch. It consists of two switches that charge and discharge capacitors 
making them behave as they were resistors.  

 

 
Fig. 5.3:  SC filter circuit. 

 
 module Double_Switch (even,odd,common,commutation) { 
  // Declaration section 
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         switch se,so; 
  // Structural section 
         se (common,even,commutation,0) val_on=val_off=0; 
         so (common,odd,0,commutation) val_on=val_off=0; 
 } 
 

 
 The SC filter circuit is excited through a sample and hold circuit, shown in 
Fig 5.4.  

 
Fig. 5.4:  Sample and hold circuit 

 The sample/hold circuit is also described as a separate module 
SH_circuit, with three interface nodes. 
 
 
 module SH_circuit (node input, output, commutation) { 
   switch se,so; 
   capacitor c1,c2; 
   opamp opamp1,opamp2; 
 
   se (input,sample,commutation,0) {val_on=val_off=0;} 
   c1 (sample,0) 1pF; 
   opamp1 (internal,sample,internal); 
   so (internal,hold,0,commutation) {val_on=val_off=0;} 
   c2 (hold,0) 1pF; 
   opamp2 (output,hold,output) ; 
 } 
 

 Switches are controlled by the voltage at the node called commutation. Its 
value, depending on weather it is greater or less than zero, determines state of the 
switches. Operational amplifiers are modeled as ideal (single voltage controlled 
source). 

 For the simulation, sine wave of frequency 128kHz is used to control the 
switches. In Fig. 5.5 simulation results are shown: excitation and response of the 
SC filter circuit. 
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Fig. 5.5:  Simulation results for SC circuit excited by triangular input signal. 
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 5.3. Switching voltage regulators 
 
 The ideal switch model is suited for all types of circuits. A particularly 
important class of switched circuits is that of switching voltage regulators. One of 
the main problems in simulation of such class of circuits is occurrence of 
inconsistent initial conditions. These conditions occur after switching, when 
instantaneous change of the capacitor voltage or inductor currents can happen. In 
such cases, current through capacitor and voltage over inductor have infinite 
values, but such impulses have infinitely short duration (Dirac impulses). Such 
problems are usually solved by the application of special algorithms for switched 
networks [Opal90]. 

 With our model, we have modeled the transition of the switch state, i.e. the 
switching is not represented just as a replacement of one network topology by 
another. With our nonlinear model, the switch transition is performed through 
number of iterations, where, in every iteration, both Kirchhoff laws are satisfied 
[Mr~a99]. Networks with inconsistent initial conditions are solved using standard 
circuit simulation algorithms. This enables changes in the level of abstraction used 
in modeling, without change of the simulation environment. 

 As identified in [Bedr92, Vlac95], the problem of inconsistent initial 
conditions is not only to conserve the charge and the flux. It is very important to 
take into account Dirac impulses that can occur in the moment of switching, 
especially if the network contains internally controlled switches. A Dirac impulse 
can itself change the states of some switches in the network, thus changing the 
network topology once more in the same time instant. 

The problem will be depicted by the ideal flyback switching converter, 
given in Fig. 5.6(a). The switch s represents the transistor that is externally 
controlled. The diode D is also modeled as ideal switch, but internally controlled. 
One can model this diode using a control variable p [Bedr92]: 

D
ON if p

OFF if p
:

>
<

⎧
⎨
⎩

0
0

  ,       . (5.1) p
i if D is closed

v v if D is openj k
=

−
⎧
⎨
⎩

 Therefore, the state of the switch D is controlled by the variables in the 
circuit itself. Let us start the analysis with switch s closed and switch D open. The 
equivalent circuit is shown in Fig. 5.6(b). Inductor current iL is linearly increasing. 
When s is externally opened, the inductor current has no closed loop. Therefore, iL 
must drop instantaneously to zero. Because of that, a Dirac impulse of voltage 
appears at the inductor. This Dirac impulse changes the switch control variable p to 
a positive value (eqn. 5.1.), and D becomes closed. Since Dirac impulse has zero 
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duration, D is closed in the same time instant when s is opened. When this happens, 
the current of the inductor has a closed loop to flow (Fig. 5.6(c)), and there is no 
discontinuity in the inductor current. Therefore, the 

  
Fig. 5.6: (a) Ideal flyback switching converter. (b) Equivalent 

circuit for s closed and D open. (c) Equivalent circuits for 
s open and D closed. 

 Dirac impulse of the inductor voltage would be erased. There cannot be 
any impulse of the inductor voltage in simulation results, but the Dirac impulse 
must appear to switch the diode D, i.e. to change the value of the control variable p. 
Similar condition happens when s is externally closed. Dirac impulse of current  
appears through capacitor C, but it opens diode D in the same time instance.  

 In [Bedr92], special algorithm is developed for simulation of such 
networks, but with linear elements only. Our switch model enables simulation of 
such networks using exclusively standard simulation algorithms, and without any 
restriction in network topology, possible switch states and model linearity. The 
simulation results for the flyback converter are given in Fig. 5.7. The element 
values are E=1 V, L=150 mH, C=50 mF, R=10 W. The switching period for the 
switch s is 70ms, time when s is closed is 30ms, when it is open is 40ms (duty 
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cycle is 
3
7

). These parameters are not optimized from the point of view of circuit 

performance. 

 The results show correct transitions of the internally controlled switch D. 
The model is nonlinear, since it uses an iterative procedure for transition from one 
switch state into another. During this procedure, the existence of Dirac impulse is 
automatically taken into account, although no special algorithms are used for that. 
Therefore, the Dirac impulse occurs only in the iterative process, but not in the 
final solution given in Fig. 5.7, where current iL and voltage vC are continuous. 
However, the Dirac impulse can change the states of other switches in the circuit. 
The convergence can occur only when all switches in the circuit reach their final 
state. There is no need to create any special algorithm that would check for the 
possible occurrence of the Dirac impulses and their influence to the switch states. 
When the convergence is reached in the whole circuit, all switch transitions are 
finished and consistent state is obtained, with charge and flux conservation. Details 
of the switch implementation and analysis of this iterative procedure are given in 
[Mr~a99]. 

 
Fig. 5.7: Simulation results for the flyback converter. 
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 5.4. MOSFET modeling using artificial neural network 
 
 As shown in section 3.3, modeling of nonlinear analog devices using 
model cards as static objects has the advantage of separating the nonlinear function 
and the enclosing process. As long as model class methods accept terminal voltages 
and return both nonlinear function value and partial derivatives, the actual method 
implementation is of no importance. We used this property to develop a model 
class whose methods model MOSFET drain current using artificial neural network. 
It was shown that an artificial feed-forward neural network may be trained to 
behave like a nonlinear device, given the sufficient input-output data set, obtained 
either by measurements or simulation [Lito92, Lito93]. Such a network has as 
many neurons in the input layer as there are input variables (in our case voltages 
Vgs and Vds), and one output neuron (Ids). Training has shown that one hidden 
layer with 10 neurons is sufficient to obtain neural network response with an 
acceptable error. The results of the training were weights and thresholds associated 
with the neurons, and they were introduced in the defined model card class as 
parameters. Once the neural network response method was implemented, the 
MOSFET model did not differ from the example given in section 3.3, with the 
identical interface type signature. 

 The following declaration was used to introduce a model class annmos: 
 
 
 class annmos { 
   private: 
     double w[32], t[12], x[50];  // weights, thresholds 
     double oj[11], ojg[11]; // intermediate results 
     int n, n0, np;   // network dimensions 
     int hidden_transfer, outtransfer; // transfer type 
     double hidden_gain, outgain;  // transfer gains 
     annmos(int, int, int);  // class constructor 
     >annmos();   // model card preprocessor 
     void create_unified_neurodata(); // class unifier 
   public: 
     double vds_min, vgs_min; // vds normalization 
     double vds_max, vgs_max; // vgs normalization 
     double ids_min, ids_max; // ids normalization 
     double vgsd, vdsd, idsd; // normalized values 
     double Cgd, Cgs, Cgb;  // MOS capacitances 
     double Cbd, Cbs;  // junction capacitances 
     double type;   // device polarization 
     void neuro_response(double *, double *); // net response 
 }; 
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 A subcircuit that defines artificial neural network MOSFET model is 
defined by the use of structural modeling: 
 
 
 module annmos::neuromos ( node drain, gate, source ) { 
     vccs e_gm, e_gds; 
     cgen iaux; 
     // voltage-controlled current sources 
     e_gm (drain, source, gate, source); 
     e_gds (drain, source, drain, source); 
     iaux (drain, source);  // error current 
     // capacitances 
     cgs (gate, source); 
     cgd (gate, drain); 
     cds (drain, source); 
     action {  // model of the behavior 
         process initial { *cgs=Cgs; *cgd=Cgd; *cds=Cds; } 
         process per_iteration { 
             double inp[3], ok[4]; 
             double vg, vd, vs, vgs, vds, ids, gm, gds; 
             // extract controlling voltages 
             vd = drain;   vg = gate;   vs = source; 
             vgd = type * (vd - vs); 
             vgs = type * (vg - vs); 
             // normalize input vector 
             inp[INP_VGS] = (vgs - vgs_min)/vgsd; 
             inp[INP_VDS] = (vds - vds_min)/vdsd; 
             this->neuro_response ( ok, inp ); 
             ids = ok[1] * idsd + ids_min; // denormalize Id 
             gds = ok[2] * idsd / vdsd;     // denormalize gds 
             gm = ok[3] * idsd / vgsd;    // denormalize gm 
             // update the linear model elements 
             iaux->value = type * (ids - gm*vgs - gds*vds); 
             e_gm->gm = gm; 
             e_gds->gm = gds; 
         } 
     } 
 } 
 

The simulation of a CMOS inverter composed of two ANNMOS (Artificial 
Neural Network MOS) devices is illustrated in the Fig. 5.8. Since the nonlinear 
function that models MOSFET drain current has continuous first derivatives in the 
entire range of interest (four orders of magnitude), no convergence problems 
occurred in the transition regions. It should be noted that this modeling method 
may be used for any nonlinear device or system, given sufficient input-output 
relation data. 
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Fig. 5.8: Comparison of the simulation results of a CMOS inverter 

composed of standard transistor models (MOS) and artificial 
neural network models (ANN). Two curves evidently match 
in the whole voltage domain of interest. 
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 5.5. Adaptive fuzzy-logic vehicle engine controller 
 
 Fuzzy logic control systems are particularly interesting as mixed-signal 
systems. Engineers often use general-purpose mathematical packages to develop 
fuzzy logic control systems. However, those systems eventually end up in 
hardware, when electronic circuit simulators should be used. Due to AleC++ 
modeling power, Alecsis is capable of supporting the entire design process, from 
the conceptual to the final stage. The example of such a system may be an adaptive 
fuzzy-logic vehicle engine controller, shown in Fig. 5.9. 

 
Fig. 5.9: Adaptive fuzzy-logic vehicle engine control system block 

diagram 

 The system controls a vehicle engine in order to respond to changes in the 
road grade [Cox93]. The engine speed is monitored using a tachometer. In order to 
solve the control problem using the fuzzy-logic approach, the tachometer readings 
and the road grade are first fuzzyfied. This information is used to produce a 
fuzzyfied engine throttle movement value in the control logic block. The exact 
(crisp) control value is obtained in the defuzzyfication module, and then applied to 
the engine. As expected, the entire system is parameterized by creating a new 
model class, containing data about fuzzy regions, domain knowledge in the form of 
a fuzzy associative matrix, rule weights and so on. Connections between the 
modules are modeled using variables of type flow for crisp values, and structures 
for fuzzy values. The entire system is self-adaptive, i.e. capable of responding to 
long-range changes in the environment. The behavior of all of the modules is 
implemented as model class methods, including the self-adaptation mechanism. 
The vehicle engine was modeled using an ordinary differential equation by means 
of AleC++ eqn statement. 
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 The first step in modeling for Alecsis is to create a new class that describes 
resources needed in the simulation: 
 
 
 class fuzzy { 
     int ntach; // number of tachometer fuzzy values 
     int nlt; // number of load torque fuzzy signals 
     int ntas; // number of throttle mov. fuzzy values 
     FUZZY_VALUE tach[TACHSIZE]; // tachometer fuzzy logic system 
     FUZZY_VALUE torq[LTSIZE]; // load torque fuzzy logic system 
     FUZZY_VALUE tas[TMSIZE];  // throttle action fuzzy log. sys. 
     double tcmin, tcmax; // tachometer range 
     double trqmin, trqmax; // load torque range 
     double tamin, tamax; // throttle action range 
     int fam[LTSIZE][TACHSIZE];// fuzzy assoc. memory (knowledge) 
     int center_of_response[2];// steady-state location 
     double weights[LTSIZE][TACHSIZE];  // FAM weights matrix 
     void fuzzy(int);  // class constructor 
     void ~fuzzy(int);  // class destructor 
     double engine_response; // engine reaction 
   public: 
     double memf(FUZZY_VALUE*,double,double); // membership func. 
     void evaluate_output(double*,double*,double*,int);// mapping 
     double integrate(double*); // evaluation of centroid 
     void update_weights();     // auto-adaptation of weights 
 }; 
 

 
 After the definition of the model class, an unlimited number of model cards 
of that class may be constructed. An example may look like this: 
 
 
 model fuzzy::speed_cont { 
     ntach=5;   nlt=4;      ntas=5;     tcmin=0.1;   tcmax=8.0; 
     trqmin=0;  trqmax=40;  tamin=-60;  tamax=60; 
     // tachometer fuzzy value system coordinates (feedback) 
     tach = { { "very_slow", { 0.1,  0.1,  0.4,  0.8 } }, 
              { "slow",      { 0.5,  1.65, 1.65, 2.8 } }, 
              { "optimal",   { 2.0,  3.25, 3.25, 4.5 } }, 
              { "fast",      { 3.2,  4.7,  4.7,  6.2 } }, 
              { "very_fast", { 5.5,  7.0,  8.0,  8.0 } } }; 
     // load torque fuzzy value system coordinates (feed forward) 
     torq = { { "zero",              {  0,    0,  2.5, 10 } }, 
              { "small_positive",    {  5, 12.5, 12.5, 20 } }, 
              { "moderate_positive", { 15, 22.5, 22.5, 30 } }, 
              { "large_positive",    { 25, 32.5,   40, 40 } } }; 
     // throttle action fuzzy value system coordinates (output) 
     tas = { { "LN", { -60, -60, -45, -30 } }, 
             { "SN", { -40, -20, -20,  -2 } }, 
             { "ZR", { -10,   0,   0,  10 } }, 
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          { "SP", {   2,  20,  20,  40 } }, 
 
             { "LP", {  30,  45,  60,  60 } } }; 
     // fuzzy associative memory (knowledge repository) 
     fam = { { LP, SP, ZR, SN, LN }, 
             { LP, SP, ZR, ZR, SN }, 
             { LP, SP, SP, SP, ZR }, 
             { LP, LP, LP, SP, SP } }; 
     // initial equilibrium center on the control surface 
     center_of_response = {Optimal, Zero }; 
     // initial rule contribution weights - all rules are equal 
     weights = { { 1, 1, 1, 1, 1 }, 
                 { 1, 1, 1, 1, 1 }, 
                 { 1, 1, 1, 1, 1 }, 
                 { 1, 1, 1, 1, 1 } }; 
 } 
 

 

 
Fig. 5.10: Vehicle engine control system response to rapid change in 

the road grade 

 Fig. 5.10 shows the system response to a rapid change in the road grade. 
Two distinct regions exist in the response curve: one, that represents the primary 
response, and another, where the system slowly adjusts the rule weights to move 
the center of the response to a different location. This effect is shown in the weight 
surfaces in the Fig. 5.11. The center-of-response displacement is clearly visible on 
the surface contour lines. 
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Fig. 5.11: Weight surfaces before (a) and after (b) the road grade 

change. The center of response has visibly moved towards 
the new equilibrium point. 
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 5.6. Continuous time control system simulation 
 
 When systems are described on a higher level of abstractions, block 
diagrams can be used for their representation. Control systems are often 
represented using such description. A transfer function in s-domain of one 
subsystem (block) can be represented as a rational function: 

H s D s
N s

b b s b s
a a s a s

m
m

n
n( ) ( )

( )
= =

+ + +
+ + +

0 1

0 1

K

K
 (5.2) 

 Such expressions can be realized as shown in Fig. 5.12, when the control 
form representation is used. 

 
Fig. 5.12: Control form representation. 

 When writing transfer function module, we are using modules that describe 
smaller blocks in Fig. 5.12. For instance, integrator block is represented through: 
 
 
 module integral (flow fin, fout) { 
      action (double w=1.0) { 
         process per_iteration { 
            eqn fout: { fout } - w * idt { fin } = 0; 
         } 
      } 
 } 
 

 
 The command clone was used to model an array of integrators, as well as 
gain stages that create inputs to the adders. This is contained inside the module 
transfer (not given here), representing the block scheme from the Fig. 5.12. 
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 As an example of continuous-time system simulation the response of a 
pulse compressing allpass filter will be evaluated. The transfer function of the 
circuit is given by 

 
( )
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s s

s si
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2
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(σ, ω)i being the pole/zero coordinates as given in Table 5.1. 

    Table 5.1: 

i σi ωi

1 0.051690 0.568976 

2 0.057089 0.646074 

3 0.064608 0.731975 

4 0.076094 0.830426 

5 0.096704 0.948449 

6 0.147276 1.098074 

 

 
 Fig 5.13.a: The input signal  Fig 5.13.b: The output signal 

 The input signal is frequency modulated and gaussian shaped: 

 , ( )v e t btin
at= +− 2

0
2cos ω
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where ω0 = 1.52344, a = 0.11033215 and b = 0.25794107 [Laz72], given in Fig 
5.13.a. 

 The output (amplified and monochromatic) signal as obtained by 
simulation is depicted in Fig 5.13.b. 

 Here, again, the clone command was used in order to replicate the basic 
second order allpass cell six times. 
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5.7. Nonlinear magnetic circuit modeled using artificial 

neural network 
 
 Direct current magnets have found a wide range of applications, as 
actuating elements in devices with automatic control, in precision mechanics, etc. 
Latest applications of these magnets have set more rigorous requests with regard to 
increase of the switching speed and dimension miniaturization. It is very important 
to model and simulate electromagnets, in order to optimize their parameters. 
Especially important is transient analysis, where the goal is usually to find the 
optimal waveform of the input voltage in order to obtain fast switching of the 
armature, but to avoid damage of the contacts caused by collisions. 
 

 
Fig 5.14:  An electromagnetic circuit 

  

Schematic representation of a DC magnet is shown in Fig. 5.14. Position of 
the electromagnet is determined by the equilibrium of mechanical and magnetic 
forces: 

F Fmag mech=  (5.4) 

 Mechanical force is a sum of four components. These may be expressed as 
shown in Table 5.2. 

Notation used here is: M for mass, c for spring constant, ρ for friction 
resistance. 
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Table 5.2:  Mechanical forces acting on the armature. 

Mass Spring Friction Constant fo ce r

F M
dv
dt

= ⋅  
dF
dt

c v= ⋅  F v= ⋅ρ

 
F F= 0

 

 
 
 Total mechanical force is then: 

F M x x c xmech F= ⋅ + ⋅ + ⋅ +&& &ρ 0  (5.5) 

 The value of the magnetic force depends on electrical quantities. Electrical 
part of the device can be modeled as: 

u R i
d
dt

= ⋅ +
ψ

 (5.6) 

where R represents ohmic resistance of the coil, and ψ is the magnetic flux. The 
flux is determined by the current through the coil and the size of the air gap 
between the movable armature and the magnet core. 

(ψ = f i x, )  (5.7) 

 Magnetic force can be than calculated as: 

(F
E

x x
di g i xmag

mag
i

= = ⋅ =∫
∂

∂
∂
∂

ψ
0

, )  (5.8) 

where Emag denotes electromagnetic energy in the air gap. 

 The equilibrium equation (1) can now be written as: 

( )g i x M x x c x F, && &= ⋅ + ⋅ + ⋅ +ρ 0 (5.9) 

 Equations (5.6) and (5.9) represent the model of the magnet that should be 
implemented in an HDL. Unfortunately, function that determines flux is, as is 
already mentioned, usually very difficult to obtain in a closed form. An artificial 
neural network (ANN) can help solving this problem. We used ANN shown in the 
Fig. 5.15 to approximate flux as a function of i and x. Moreover, neural network 
can be used to calculate directly g(i,x), i.e. the magnetic force. Force is the function 
of the same inputs i and x, and the same network calculates both values. For that 
reason, network in Fig. 5.15 has two output neurons. Both values are necessary for 
implementation of the model in the simulator (equations (5.6) and (5.9)). 
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Fig. 5.15:  ANN used in modeling magnetic characteristics 

 
 As mentioned in section 3.2, AleC++ have special operators for description 
of first and second order time derivatives. The latter one was developed 
particularly for description of mechanical systems, since second order differential 
equations are often in use there. For that reason, eqn. (5.9) can be described nearly 
as it is given in the text. 
 
 
 main_equation: process per_moment { 
    eqn x:  -{Fmag}  +M*d2dt2{x}  +RO*ddt{x}  +c*{x} = -F0; 
 } 
 

 
 For the voltage excitation the step function is used. Its amplitude was 24V. 
All variables (x(t), v(t) and a(t)) were considered zero for t=0. In Fig. 5.16(a) the 
simulation results are given. As may be seen, the movable part of the core 
eventually reaches its goal with significant velocity. These results are to be 
compared with measured ones given in Fig. 5.16(b). 



Alecsis  - the simulator 
 

 
 
 

56 

 
(a) 

 
(b)  

Fig. 5.16:  (a)  Simulation results.   (b) Measured characteristics. 
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5.8.  Pressure sensing system 

 
 AleC++ is a HDL created as a superset of the standard programming 
language. Its programming features are very helpful in defining complex models. 
In this example we have used them to model devices with distributed parameters. 

 In Fig. 5.17, a micro-electro-mechanical pressure sensing system is shown. 
A rectangular capacitor membrane is deformed when pressure is applied. 
Membrane deformation is modeled using a partial differential equation [Timo59]. 
That equation can be discretized and represented as a system of ordinary 
differential equations. Discretization is performed in the for loop in the action 
block of the module. That for loop must be in the structural process (types of 
process synchronization are given in the section 3.2), since the structure of the 
system of equations must be defined before the simulation, and the structural 
processes are performed before the actual simulation starts. 

 

Fig. 5.17:  Micro-electro-mechanical capacitive pressure sensing system. 
 

 The time-domain simulation results are given in the Fig. 5.18. The spatial 
displacement of the membrane for one time instant of time-domain simulation is 
given in Fig. 5.19. It is interesting to note that the graphical postprocessor that is 
used to create all time-domain simulation results is also a class described in 
AleC++ language and stored in the library. For spatial drawings, as given in Fig. 
5.19, a new class is defined in AleC++, derived from the class for standard, time-
domain waveforms. In this way, we did not have to write a new graphical 
postprocessor for this purpose. Functions from the base class are used, just some 
new had to be added to the derived class. Both the time-domain simulation results 
and the spatial drawings can be viewed during the simulation run. 
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Fig. 5.18: Time-domain simulation results for the system given in 

Fig. 5.17. Traced signals are pressure, displacement of the 
pressure sensor center, sensor capacitance, and the output 
voltage. 

 
Fig. 5.19: Displacement of the sensor membrane for simulation time 

instant 0.0004s in Fig. 5.18. 
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 5.9. Thermoelectrical simulation 
 
 In many microsystems and microelectronic circuits thermal effects have 
significant importance. Spatial distribution of the temperature on a chip should be 
simulated, together with electronic subsystem. The coupling is bidirectional, as 
electronics is influenced by the temperature, and electronic components represent 
heat sources. 

 Thermoelectrical simulation is performed in Alecsis using finite element 
(FE) method for spatial discretization. The user defines the geometry and placing 
of the components on the wafer by using commercial FE software with meshing 
capabilities. The strength of the method is in the fact that FE discretization can 
accurately describe the physical laws on irregular shapes with irregular mesh. The 
system of equations is extracted into the form applicable to analogue simulators. 
Afterwards, the electronic system or components described on higher level of 
abstraction are defined and coupled with thermal FE modules. Alecsis is employed 
to solve a system, assembled from particular element models previously 
programmed as libraries in AleC++. 

 The quality of the approach can be described on the flow sensor based on 
anemometry principle (system in Fig. 5.20, similar to [Jime98]). The heating 
resistor is employed for generating thermal gradient in the region of interest (wire, 
cantilever, bridge). The temperature difference between the referent and the heated 
position is proportional to the velocity of flow, since the flow disturbs the 
distribution of thermal gradients. It is a fluidic-thermal-electric system and requires 
simultaneous treatment of all participating physical domains. 

 
Fig. 5.20: The flow sensor with the circuitry. 
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 The placement of the components is shown in Fig. 5.20. It describes the 
circuitry for defining constant average temperature difference between the heater 
and the reference. The fluid influences the thermal flow, and that flow is measured 
by the temperature-dependant diodes. 

 
Fig. 5.21: Main thermal flows in the flow sensor. 

 This system defines a sigma-delta converter of the first order with the low-
pass feedback incorporated in the thermal system (Fig 5.21). The FET transistor is 
switched depending on the temperature difference between the heater and the 
reference. The frequency of the switching is a measure of the flow velocity. 

Fig. 5.22: Temperature distribution on the chip. 
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 The ANSYS v5.4 results for 2D thermal simulation with emphasized 
isotherms are shown in Fig. 5.22. Comparison with Alecsis results for the same 
thermal system shows relative error smaller than 0.002%. The 2D model was 
somewhat simplified. The bottom part of the structure in Fig. 5.22 has fixed 
temperature, which presumes the connection with an ideal sink. The system is 
modeled as adiabatic in z-plane, i.e. there is no heat transport in the direction of the 
z-axis.  

 Alecsis transient simulation results of the coupled electro-thermal system 
are shown in the Fig. 5.23. Traced signals are the heater temperature, the 
temperature of the cantilever close to the heater, the reference temperature, the 
measured fluid velocity, and the clock signal. Results show change of the 
frequency of the heat pulses with the change of the fluid flow velocity. 

 
Fig. 5.23: Transient results for the behavior of the flow. 

More details about electrothermal simulation in Alecsis can be found in 
[Jako99]. 
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 5.10. Digit-serial 8-bit systolic array multiplier 
 
 Like VHDL, AleC++ does not favor any logic value system. The logic 
value system and appropriate lookup tables, overloaded logic operators, basic logic 
gates, bus resolution functions, etc., can be described in AleC++ and conveniently 
stored in the library and retrieved when needed. 
 

 
Fig. 5.24: Block diagram of digit-serial semi-systolic multiplier:  

RA - register for the first operand of multiplication; LR and 
LS - latch arrays storing partial products; MUX_C - 
multiplexer 2 to 1; MUX_PS - multiplexer 2W to 2D; LSC 
and LC - latches; RCA - ripple carry adder; LL and LH - 
latch arrays storing lower and higher portions of the result; 
FA - full adder. 
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 The digit-serial multiplier shown in the Fig. 5.24, the building element of 
more complex semi-systolic architectures [Mile95, Mile96], is simulated using a 
pre-compiled library developed to emulate the HILO logic simulator [Harr85]. The 
multiplier is composed of basic processing elements that communicate locally and 
work in synchronization. The first operand of the length W is available in parallel 
in register RA, while the second (X) is fed in digit-by-digit, where the number of 
bits in a digit is marked as D. The multiplier operates in two phases: in the first 
phase the lower portion of the product is generated at the outputs s0-sD-1, while the 
other half is available in the second phase at the outputs sD-s2D-1. 

 Let us illustrate the multiplier modeling by showing the simplified model 
of full adder, which is part of the systolic array basic element, as shown in Fig. 
5.20. Firstly, the model class fadd is defined. 
 
 
 // model parameters defined with min, typical and max value 
 typedef double param[3]; 
 // different delays from inputs to outputs, direction flags 
 # define FROM_AB  0 
 # define FROM_CIN  1 
 # define TO_SUM   0 
 # define TO_COUT  1 
 #  define TAKE_MAX_DELAY -1 
 // full adders model class 
 class fadd { 
  param delay01[2][2];// rising edge propagation delay 
  param delay10[2][2];// falling edge propagation delay 
  fadd(); 
  >fadd(); 
   public: 
  // delay function 
  double ADDdelay (three_t, three_t, int, int);  
  friend module fa; 
 }; 
 

 
 Full adder module is described with the following code. 
 
 
 module fadd::fa (fift_t in a, b, c_in;  
                  fift_t out sum, c_out) { 
   action { 
     process (a, b, c_in) { 
       three_t a3, b3, c_in3, sum_result, cout_result; 
       int from_in; 
    // detect active input 

 

 
             if((a->event || b->event) && c_in->stable) 
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         from_in = FROM_AB; 
 
       else if( c_in->event && a->stable && b->stable) 
         from_in = FROM_CIN; 
       else {  // simultaneous event at (a or b)/c_in 
         warning( 
      "fadd::fa - simultaneous (a or b)/c_in change"); 
         from_in = TAKE_MAX_DELAY; 
       } 
    // convert input states to three_t 
       // log. operations are not held in HILO's 15-st. log. 
       // system (fift_t), but in 3-state system (three_t). 
       a3 = Con15to3[a]; 
       b3 = Con15to3[b]; 
       c_in3 = Con15to3[c_in]; 
    // evaluate logic function 
       sum_result = a3 ^ b3 ^ c_in3; 
       cout_result = (a3 & c_in3) | (a3 & b3) | (b3 & c_in3); 
       sum <- Con3to15[sum_result] after 
   this->ADDdelay(sum_result, Con15to3[sum],  
       from_in, TO_SUM); 
       c_out <- Con3to15[cout_result)] after  
   this->ADDdelay(cout_result, Con15to3[c_out], 
       from_in, TO_COUT); 
     } // process (a, b, c_in) 
   } // action 
 } // module fadd::fa () 
 

 
 The above code is part of mentioned Alecsis library for HILO emulation. 
In order to use the module fa in multiplier description for simulation, user has to 
connect the library file and to define its model card. One particular model card for 
a full adder module is as follows. 
 
 
 model add15::fa_1 { // {min value, typ value, max value} 
   delay01[FROM_AB][TO_COUT] = {0.2ns, 0.5ns, 1.0ns}; 
   delay10[FROM_AB][TO_COUT] = {0.3ns, 0.6ns, 1.5ns}; 
   delay01[FROM_CIN][TO_COUT]= {0.3ns, 0.5ns, 1.3ns}; 
   delay10[FROM_CIN][TO_COUT]= {0.3ns, 0.6ns, 1.5ns}; 
   delay01[FROM_AB][TO_SUM]  = {1.3ns, 2.4ns, 5.6ns}; 
   delay10[FROM_AB][TO_SUM]  = {0.9ns, 2.2ns, 6.0ns}; 
   delay01[FROM_CIN][TO_SUM] = {0.5ns, 0.9ns, 2.0ns}; 
   delay10[FROM_CIN][TO_SUM] = {0.4ns, 0.9ns, 2.7ns}; 
 } 
 

 
 The multiplier is simulated at gate level, using generic structures that 
enabled the word length to be passed as an action parameter. An example of the 
simulation results for the configuration with W=8 and D=4 is shown in the Fig. 
5.25. The entire circuit contains more than 500 gates modeled with more than 1000 
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concurrent processes, while around 25000 events were handled during the 
simulation. It took 4.76 CPU seconds to simulate the circuit using Alecsis 
implementation on Hewlett-Packard Series 9000/375 platform with Motorola 
MC68020 processor. The simulation results obtained using HILO logic simulator 
were identical. Unfortunately, HILO was implemented on a different platform and 
simulation times were not comparable. 

 
Fig. 5.25: Example of simulation results for 8-bit configuration of the multiplier 

from Fig. 5.24: clock, ctrl1 and ctrl2 are global control signals; x[0] - 
x[3] are inputs for second operand; ra[0] - ra[7] are RA outputs (first 
operand); lh[0] - lh[3] are the outputs of LH; ll[0] - ll[3] are the outputs 
of LL. 
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 5.11.  LAN Ethernet network simulation 
 
 While the previous example shows Alecsis use in gate-level logic 
simulation, this one will illustrate its capabilities at higher levels of abstraction. 
Using signals typed as classes, it is possible to create complex inter-process 
communication. Fig. 5.26 shows Local Area Network (LAN) modeled using 
AleC++ discrete-event simulation constructs. Each workstation is represented as an 
autonomous concurrent process with its own activity pattern. LAN cable segments 
between stations are modeled as simple bi-directional buffers that pass information 
with some transport delay proportional to the cable length. After non-deterministic 
idle periods calculated using the uniform random distribution, the stations attempt 
to send their frames, according to CSMA/CD protocols [Watk93, Schw87]. After 
sending the frame, the station monitors the line for the specified period 
(2*slot_size), and then compare the original and the frame on the line. If they are 
not the same, the collision took place, and the frames are scheduled for 
retransmission after a period calculated using binary exponential backoff algorithm. 
According to CD (Collision Detection) strategy, the station is capable of truncating 
the corrupted frame without waiting 2*slot_size period in case of collision. 

 
Fig. 5.26:  Schematic of an abstract LAN Ethernet network 

 
 The workstation model in AleC++ is as follows. 
 
 
 
 
 
 
 
 
 enum StationState { NormalState, CollisionState }; 
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 module LAN::workstation(frame inout lan_port) { 
     action (int id, const char *ws_name) { 
 
         process { 
             frame last_frame; 
             double last_sent = 0.0; 
             StationState ss = NormalState; 
             int ntrials = 0; 
             if (ss == NormalState) { 
               wait for idle_period(); 
               last_sent = now; 
               if ( !lan_port.status (FreeLine) )  
                 wait lan_port while  
                                 !lan_port.status(FreeLine); 
             } 
             last_frame.stamp(NormalFrame, id, 
                            receiver(id, nst), now, ws_name); 
             lan_port <- last_frame; 
             last_sent = now; 
             wait lan_port for listen_period(); 
             if ( last_frame != lan_port ) { 
               if (ss == NormalState) { 
                 ntrials = 0; 
                 ss = CollisionState; 
               } 
               ntrials++; 
               if(ntrials > max_trials() ) { 
                 ss = NormalState; // discard frame 
                 ntrials = 0; 
               } else { 
                 lan_port <- frame(NoiseBurst, now); 
                 wait for burst_period(); 
                 lan_port <- frame(FreeLine, now); 
                 wait for retrans_period(ntrials); 
               } 
             } 
             else { // successful transmission 
               ss = NormalState; 
               lan_port <- frame(NoiseBurst, now); 
               wait for burst_period(); 
               lan_port <- frame(FreeLine, now); 
               last_frame.stamp(FreeLine,0,0,now,ws_name); 
             } 
         } 
     } 
 } 
 

 
 The complete modeling procedure for this problem is explained in 
[Maks95]. 

 As in all previous examples, workstation modules are parametrized using 
model card class. That gives an opportunity to create model cards of real 
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workstations, with different idle times and activity patterns. Fig. 5.27 shows the 
simulation results of an abstract LAN Ethernet network with 50 workstations 
interconnected with 5m cable segments. The stations were idle from 0 to 10ms, 
while the simulation covered 0.2s time period. The curve represents number of 
stations waiting to transmit their frames due to the occupied line. All the stations 
were capable of gathering the statistical data about network performance. Post 
processing of those data carried out in a process synchronized using implicit signal 
final showed that 712 frames were sent successfully, while 1319 frames were re-
transmitted due to a collision. The total transmission delay was 2.43s, average 
delay per station 47.6ms, and average delay per frame 3.47ms. 

 
Fig. 5.27: Simulation results of the LAN Ethernet network with 50 

workstations. The curve represents number of stations 
waiting to transmit their frames due to occupied line. 

 

 As the next example, the Ethernet bridge modeling and simulation will be 
considered. 

 The Ethernet bridge, as shown in Fig. 5.28, interconnects network 
segments. The network layer as well as all other (transport, session, presentation 
and application) layers are not affected by the bridge, so that the bridge is totally 
transparent to the user. Two main functions of the bridge are: filtering traffic 
(bridges provide for a filtering component to improve network performance) and 
bridging media. (Bridges frequently interconnect different networks. These 
networks are often Ethernet or token ring. The bridges merely duplicate all signals 
originating from all source networks and send them to other networks.) 
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 In the example considered here, the bridge has two LAN-boards because it 
interconnects two segments. The received frame on one board (port1) has to be 
transferred by the bridge to another segment via appropriate LAN-board (port2). 
In operation mode, the bridge may be in one of the following five states: 

1. NormalState - in this state the bridge waits to receive frames 

2. TransmisionState1 - in this state bridge attempts to send a frame to port 1 

3. CollisionState1 - in this state, after collision, the bridge resends the frame to 
port 1 

4. TransmisionState2 - in this state the bridge attempts to send a frame to port 
2 

5. CollisionState2 - in this state, after collision, the bridge resends the frame to 
port 2. 

 
Fig. 5.28:  Ethernet LAN with a bridge 

 The state-transition diagram used for modeling is presented in Fig. 5.29 in 
a form of an oriented graph. For simulation purposes, in addition to the network 
topology and functionality, the time properties for every network element and 
delay times for every state transition should be given. The next AleC++ code 
describes a bridge in a computer network. 
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Fig. 5.29:  State-transition diagram used for bridge modeling 

 
 
 //libr. lanb contains modules: cable,workstation,bridge,...  
 library lanb; 
 // model cards for stations and bridge 
 model LAN::sgi_indigo { 
   frame_size=256; max_retrans=16; idle_time=IdleTime; 
 }  
 model LAN::hp9000 { 
   frame_size=256; max_retrans=16; idle_time=IdleTime; 
 } 
 model LAN::bridge2 { frame_size=256; max_retrans=16; } 
 ... 
 
 
 root module net_with_bridge ( ) { 
 
 
   // declarations of workstations, cables and bridge 
   module workstation w1, w2, ... ; 
   cable c_1, c_2,  ... ; 



5. Application Notes 
 

 
 
 

71 

   module bridge b1; 
   ... 
   // signal declarations 
   signal cable_t w1_port={FreeLine}, w2_port={FreeLine}; 
   signal cable_t b1_port1={FreeLine}, b1_port2={FreeLine}; 
   signal cable_t term_1={FreeLine}, term_2={FreeLine}; 
   ... 
   // instantiation 
   w1(w1_port)  
     {ws_name="indigo"; id=5; nst=numst; model=sgi_indigo;} 
   w2(w2_port)  
     {ws_name="hp";     id=6; nst=numst; model=hp9000;    }  
   b1 (b1_port1, b1_port2)  
     { bg_name="bg301"; id=20; model=bridge2;} 
   c_5 (w1_port, w2_port)  cable_delay = Ldelay(4.0_meter);  
   c_2 (w1_port, b1_port1) cable_delay = Ldelay(5.0_meter);  
   c_6 (w2_port, term_2)   cable_delay = Ldelay(0.1_meter);  
   ... 
   timing { tstop = 13*IdleTime; } 
   ... 
 } 
 
 
 As simulation result, statistics are obtained related to all the stations, the 
bridge (see Table 5.3), and overall network. Table 5.3 contains two kinds of data: 
number of frames is given in the first five rows, while the last two rows represent 
delays caused by the data transfer through the bridge.  
 

Table 5.3:  Bridge activity statistics 

 Bridge Port 1 Port 2 
received frames total 60 43 17 
for transmission 25 18 7 
successful 23 16 7 
unsuccessful 2 2 0 
repeated 14 12 2 
total delay [s] 0.0062464   
mean delay [s/frame] 0.0001041   
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 5.12.  Successive-approximation 8-bit serial A/D converter 
 
 This example represents the ability of Alecsis to support the top-down 
hierarchical refinement of complex hybrid systems. Fig. 5.30 shows the block 
diagram of a successive-approximation serial A/D converter. The converter can 
serve as a mixed signal simulation benchmark for the following reasons: 

• the system contains analog (comparator), digital (control and weighting 
logic, shift register), and mixed-signal subsystems (sample and hold 
circuit, D/A converter macro model); 

• there is a strong feedback loop with logic subsystems present; 
• the system is too complex to be simulated at transistor level; 
• pure behavioral simulation will not give important details such as possible 

oscillations or glitches. 

 

 
Fig. 5.30:  Block diagram of an serial approximative A/D converter 

 
 The description of the serial A/D converter started with subsystem 
interface definition. All of the subsystems modules were parametrized in order to 
handle different output digital word lengths. In the first refinement, all the 
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subsystems (analog, digital and hybrid) were implemented as behavioral to obtain 
crude results. All of the logic modules were modeled at the Register-Transfer 
Level, i.e. delay times were identical for all the bits in the register data paths. 
Transfer characteristic of the analog comparator was modeled using general 
nonlinear generator and hyperbolic tangens function, while D/A converter and 
sample and hold circuit employed dual-process strategy similar to the one used for 
standard D/A domain-coupling modules implicitly inserted by the simulator. The 
simulation results of the 8-bit configuration with the slow ramp input are shown in 
Fig. 5.31. 

Fig. 5.31: Results of the A/D converter simulation using behavioral representations 
of the sub-blocks. Digital output variables are at separate plots while 
analog output variables are all at one plot. Signals data [0] - data[7] 
represent the output word. 
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(a) 

 
(b) 

Fig. 5.32: (a)  Structural version of sample and hold sub-block used in 
the second A/D converter partitioning. The circuit 
consists of logic gates, internally controlled ideal 
switch, capacitor and operational amplifier described at 
transistor level. 

(b)  Operational amplifier structure. Transistor channel 
dimensions are given in µm. 
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 The first simulation was very fast due to the high-level behavioral models. 
In order to obtain a better accuracy, some of the subsystems were further 
partitioned into smaller blocks. Digital blocks were modeled at the gate-level, 
using JK and D-type flip-flops and standard logic gates. The sample and hold 
circuit was replaced with the circuit shown in the Fig. 5.32(a), with ideal switch, 
capacitor and a CMOS operational amplifier described at transistor level as shown 
in Fig. 5.32(b). The same amplifier was used as a comparator. This partitioning 
helped to detect certain instabilities caused by the small phase margin of the 
operational amplifier. Another problem occurred due to different delay times of the 
individual JK flip-flops that form the digital output, resulting in noticeable glitches 
at the D/A converter output. Both effects are shown in the Fig. 5.33. The second 
simulation was much slower (455 sec with transistor-level CMOS opamps and 
logic gates as opposed to 4.7 sec in the case of the behavioral model) primarily 
because of the analog portion of the system. 

 

 
Fig. 5.33: Simulation results of the A/D converter with digital circuits 

at logic level, and analog at transistor level. Attenuated 
oscillations at the S&H output and glitches at D/A 
converter output are now clearly visible. 
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 5.13. Second order sigma-delta modulator 
 
 The oversampling sigma-delta conversion technique offers an alternative 
method of producing high-accuracy, high-resolution ADC’s without the need for 
precise component matching and complex analog circuitry. 

 
Fig. 5.34: First order sigma-delta modulator. 

 A first order sigma-delta modulator is shown in Fig. 5.34. The gain of the 
circuit is given by 

G
R C fclock

=
1

, (5.10) 

which means that it is dependent on the sampling rate. If the primary gain is 
designed for the lowest sampling rate, the gain will decrease with increasing 
sampling rate, reducing the dynamic range of the modulator. 

 A way to keep the gain constant is to make the integrator charging time 
invariable with respect to clock rate. This means that the analog switch must be 
turned on for fixed time duration regardless of clock rate. One solution for 
achieving this is to use monostable multivibrator as a fixed-width pulse generator 
in the circuit. A second order sigma-delta modulator with variable sampling rate is 
shown in Fig. 5.35. 

 The monostable multivibrator between the clock input and switch control 
block functions as a pulse generator to produce control signals of fixed time 
duration. The pulse width is chosen such that the circuit operates at the maximum 
clock rate of 1.024 MHz. The reference voltages of this circuit are ±1.5 V. 
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Fig. 5.35: Second order sigma-delta modulator. 

  

 
Fig. 5.36: Simulation results of sigma-delta modulator with two-level 

input excitation. 

 Results of the simulation, when two levels of a constant analog signal are 
brought to input, are given in Fig. 5.36. All digital signals in the circuit, and three 
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analog signals (input, and two voltages at the output of the integrators) are plotted 
out. 
 Fig. 5.37 shows reaction of the system when the input is excited by a linear 
ramp. The simulation time is longer, and the changes of the output can be noticed. 

 
Fig 5.37: Simulation results for linear ramp excitation 
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 5.14.  Capacitive pressure sensor followed by A/D conversion 
 
 Microsystem development, miniaturization and integration demand more 
than purely electronic circuit simulator, since mechanical and electrical subsystems 
are to be fabricated together. Simulation of the complete system is often necessary 
and cannot be performed with a simulator solely dedicated to electronics or 
mechanics. 

 The system considered here is shown in Fig. 5.38.   

 
Fig. 5.38: Sensing system 

 The pressure sensor is a capacitor, where the capacitance is dependent on a 
plate displacement, and this displacement is a function of pressure. In this example, 
the plate has circular shape. We presume quasi-static conditions and constant 
pressure all over the plate. A switched-capacitor pressure sensing system is given 
in Fig. 5.17. Cs is the sensor capacitance and Cr a reference capacitance. 

Fig 5.39:  Sigma-delta modulator 

In real systems there is a need to have digital information about the voltage 
which refers to input pressure. Since we have discussed quasi-static conditions, the 
so-called sigma-delta modulator would be a convenient way to perform A/D 
conversion. Fig. 5.39 shows detailed scheme of a sigma-delta modulator.  
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When uniform signal is brought to the input, the converter gives the 
number of pulses proportional to the level of the input signal. The resolution of 
converted signal is proportional to a time spent in conversion. Logic state of the 
output signal makes decision whether the signal coming to integrator would be 
increased or decreased. 
 The sample and hold circuit as well as the binary counter are described 
behaviorally. Their structure is not of interest, but their existence is required. All 
the parts of the system work with a clock signal of 10µs period, and sample and 
hold circuit has a clock pulse computed from: 

SHclk = resolution ⋅ 10µs 

 When resolution parameter is increased, the amount of time needed for 
gaining one value of pressure is also greater. Since we have discussed quasi-static 
conditions, this fact is not crucial. 

Fig 5.40:  Sensing system simulation results 
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The results of the simulation, when the pressure is monotone and rising, 
are given in Fig 5.40. The following variables are shown: input pressure signal; 
capacitance of the nonlinear capacitor; pressure sensor output signal; AD converter 
input held value; internal converter waveforms - voltage at the integrator output 
(vint), voltage at the input of flip-flop (hybr), returned value (n4). Digital signals 
are: clk_sh - sample/hold circuit clock signal; clk - system clock; d - digital value 
of voltage at node hybr obtained at the output of automatically inserted A/D 
converter interface circuit; ADoutput - converter output; output [0] to 
output[4] - counter output signals. Counted values are marked below. 

 Fig. 5.41 shows the system response to sine input pressure, with 
resolution=100 (ADinput is held value and counted is counter output). It is easy to 
observe mapping of sensor nonlinearity to the measured value. 

 
Fig. 5.41:   The sensing system response to the sine input signal 
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 5.15.  Alecsis-VHDL co-simulation 
 
 In this chapter we shall demonstrate the possibility of Alecsis-VHDL co-
simulation. To realize this idea we are developing a separate program – VHDL-
AMS compiler. The most of VHDL constructs are already implemented, as will be 
illustrated on a simple example. 

 There are many digital model libraries developed in VHDL, and there are 
many experienced VHDL users, too. Therefore, our intention is to enable Alecsis 
to simulate digital systems described in VHDL. It also assumes simulation of 
mixed-signal systems keeping the advantage of using VHDL standard libraries for 
description of digital portion of the system. 

 The simplest way to achieve Alecsis-VHDL co-simulation was to use the 
existing simulation kernel of Alecsis simulator (virtual processor), and to develop a 
new compiler suited for VHDL language. Our VHDL-AMS compiler converts 
VHDL or VHDL-AMS source code into object code for Alecsis virtual processor. 
Alecsis object code is designed for mixed-mode simulation. Therefore it supports 
almost all VHDL and VHDL-AMS modeling mechanisms. 

  

object code

object code

object code
and simulation

parameters
AleC++

code

VHDL-AMS
code VHDL-AMS

compiler

Alec++
compiler

libraries

simulation
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Fig. 5.42:  Concept of Alecsis-VHDL-AMS co-simulation 
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Fig. 5.42 shows the co-simulation concept. VHDL source files are 
compiled with VHDL compiler and objects are stored into simulation libraries. 
AleC++ source files are also compiled and objects are stored into libraries of the 
same format. There is only one important difference. Simulation control parameters 
cannot be obtained from VHDL code. In other words, the root module must be 
described in AleC++. The simulation engine cannot make difference between 
library objects obtained from VHDL and AleC++ compiler. 

 The basic structural unit in VHDL - entity is converted into AleC++ 
structural unit - module. Each architecture of an entity becomes a new module with 
the name equal to the name of the architecture. Generic parameters correspond to 
module action parameters. The data types in VHDL and AleC++ have different 
names, but the correspondence can easily be established due to the same machine 
representation. Type real from VHDL corresponds to type double in AleC++, 
integer to int, records are related to structures, etc. Structural hierarchy is fully 
supported both in AleC++ and VHDL. It is possible in VHDL description to 
instantiate components and to call functions described in AleC++ and vice versa. 
References to those components and functions will be resolved by the linker/loader 
before the start of the simulation. 

 

 
Fig. 5.43:  An exclusive-OR circuit 

 
 For the illustration of Alecsis-VHDL co-simulation, we shall model a 
simple circuit shown in Fig. 5.43 with combination of AleC++ and VHDL code. 
The modeling technique will not be the optimal one, but is intended to be a good 
illustration of co-simulation possibilities. Fig. 5.44 explains model hierarchy. 
Inverter (module inv) is modeled in AleC++. AND circuit as well as OR circuit is 
modeled in VHDL (architectures and2 and or2). Inverter and AND circuit are then 
combined into the AleC++ module named inv_and. The whole circuit shown in 
Fig. 5.43 is described in VHDL and named xor2. The delay delay_f function used 
both in AleC++ and VHDL is defined in VHDL. 
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 The simulation is performed in 2-state logic system (signals are of bit 
type). The AleC++ description of module inv follows: 

 
Fig. 5.44:  Model hierarchy for circuit from Fig. 5.43 

 
 
 double delay_f (bit, double, double); // func. declaration 
 
 typedef enum { '0', '1' } bit;  // state system definition 
 
 bit const not_tab[] = { '1','0' }; 
 
 bit operator ~ (bit op) { return not_tab[op]; } 
 
 module inv (bit out y; bit in a) { 
   action (double tr, double tf){ 
     process (a) { 
       y <- ~a after delay_f (~a, tr, tf) ; 
     } 
   } 
 } 
 

 
 The function delay_f is defined in VHDL. AleC++ only requires its 
declaration to be visible before the function call, because of type-checking 
mechanism. Function code is rather trivial. 
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--- Standard gate delay function:  
 function delay_f (state: bit; tr: real; tf: real) 
                                      return real is 
 begin 
     if state='0' then  
       return tf;  --fall   time 
     else  
       retu  rn tr;  --rise time 
     end if; 
 end delay_f; 
 

 
 OR and AND circuits are modeled with the next VHDL code. 
 
 
 --- Two-input AND gate: 
 entity and2_e is 
   generic (tr: real := 1.0e-9; tf: real := 1.0e-9); 
   port (y: out bit; a,b: in bit); 
 end and2;  
  
 architecture and2 of and2_e is 
 begin 
   process(a,b) 
   begin 
     y <= a and b after delay_f(a and b, tr, tf); 
   end process; 
 end inv; 
 
 --- Two-input OR gate: 
 entity or2_e is 
   generic (tr: real := 1.0e-9; tf: real := 1.0e-9); 
   port (y: out bit; a: in bit; b: in bit); 
 end or2_e; 
 
 architecture or2 of or2_e is 
 begin 
   process(a,b) 
   begin 
     y <= a or b after delay_f(a or b, tr, tf); 
   end process; 
 end or2; 
  

 
 The block composed of an inverter and an AND circuit (inv_and) is 
described in AleC++ code that instantiates VHDL component and2. Structural 
modeling is used. 
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module inv_and ( bit out y; bit in a; bit in b) {  
   signal bit inter; // internal signal, inverter output 
   module inv inverter; // modeled in AleC++ 
   module and2 and_circ; // modeled in VHDL   
 
   inverter (inter,a)   { tr=1ns;tf=0.9ns; } 
   and_circ (y,inter,b) { tr=1ns;tf=0.9ns; } 
 } 
 

 
 The whole circuit is modeled in VHDL and named xor2. It is composed of 
two components inv_and and the component or2. 
 
 
 --- Two-input XOR gate: 
 entity xor2_e is 
   port (y: out bit; a: in bit; b: in bit); 
 end or2_e; 
 
 architecture xor2 of xor2_e is 
   component or2 
     generic (tr: real; tf: real); 
     port (y: out bit; a, b: in bit); 
   end component; 
   component inv_and 
     port (y: out bit; a: in bit; b: in bit); 
   end component; 
   signal inter1,inter2: bit;       -- internal nodes 
 begin 
    -- modeled in AleC++ 
   c1: inv_and port map (inter1,a,b); 
   c2: inv_and port map (inter2,b,a); 
         -- modeled in VHDL 
   c3: or2 generic map (tr=>1.0e-9, tf=>0.8e-9) 
           port map (y,inter1,inter2);  
 end xor2; 
 

 
 Finally, to simulate exclusive-OR circuit, it is necessary to have a root 

odulem  in order to define circuit stimulus and simulation control parameters. The 
following code represents a simple root module for testing the module xor2 by 
checking its output state for all input vectors. 
 
 
 library "xor"; 
 root module xor_circuit_test (){ 
   signal bit a, b, y; 
   module xor2 g1; 
 
 
   g1 (y, a, b); 
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   out { signal bit a, b; signal bit y; } 
 
   timing { tstop = 30ns; } 
   action { 
     process initial { 
         a <- '1' after  5ns, '0' after 15ns; 
         b <- '1' after 10ns, '0' after 20ns; 
     } 
   } 
 } 
 
 

Simulation results are shown in Fig. 5.45.  
 

 
Fig. 5.45:  Simulation results for exclusive-OR circuit shown in Fig. 5.43. 
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5.16 AleC++ - VHDL-AMS co-simulation 

 
VHDL-AMS modeling environment in Alecsis is also supported by the 

compiler described in the previous section.. The co-simulation concept is the same 
as it is shown in Fig. 5.42. 

Since AleC++ resembles the semantics of standard HDLs, such as VHDL-
AMS, the correspondence between language elements can be easily established 
(Fig. 5.46). 

ALEC++ VHDL-AMS 
 

                            node                   terminal  
                        current                   through quantity  

free quantityflow  
simple eqn, across eqn, through eqn simple simultaneous statement 

ddt dot
idt integ

 
Fig. 5.46. Correspondence between AleC++ and VHDL-AMS 

For describing of continuous systems VHDL-AMS uses the theory of 
differential and algebraic equations (DAE’s). A new class of objects, the quantity, 
is introduced to represent the unknowns in the system of DAE’s. Also, special kind 
of quantities called branch quantities are used for representing the unknowns in the 
equations describing conservative systems (systems obeying Kirchhoff’s laws). 
There are two types of branch quantities: across quantities (for effort like effects 
such as voltage or pressure) and through quantities (for flow like effects such as 
current or fluid flow rate). They are declared with reference to two terminals 
representing nodes of the module. AleC++ uses a similar language element called 
link to describe quantities that appears on a module terminal and represent the 
unknowns in the behavioral system descriptions. There are five types of links in 
AleC++: node, current, flow, charge, and signal. Obviously, node corresponds to a 
terminal and current to a through quantity. The flows represent general analog 
quantities and correspond to free quantities in VHDL-AMS. Simple simultaneous 
statements used for notating DAE’s in VHDL-AMS relate to appropriate AleC++ 
constructs for writing equations. Since the way of writing equations is almost the 
same in both languages VHDL-AMS compiler can easily determine contributions 
of the equations from VHDL-AMS model to the matrix of the system of equations 
describing the whole design. It is necessary in Alecsis to explicitly specify to 
which matrix row the equation contributes. In equations using free quantities that 
information can be provided as the equation’s label. In equations containing branch 
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quantities terminals can be used to determine matrix rows to which equations 
contribute. 

VHDL-AMS provides conditional and selected forms of the simultaneous 
statement that allow changing set of equations in the model. Since AleC++ has 
similar constructs, VHDL-AMS compiler can easily translate those statements into 
the corresponding object code. 

Both languages support signal attributes for derivative and integration over 
time used in differential equations. AleC++ also supports second-order time 
derivative attribute and it is implemented in VHDL-AMS compiler, too. 

In order to illustrate AleC++/VHDL-AMS mixed-language description and 
simulation we shall model a mechanical system describing oscillating mass. The 
structure of the model is shown in Fig. 5.47. 

 
Fig. 5.47. The structure of oscillating mass model 

The architecture of the mass is described in VHDL-AMS and defines 
mechanical equilibrium as a single second-order differential equation using a 
simple simultaneous statement: 
  

entity mass_e is 
  generic (m,u,d: real); 
  port (quantity x: out real;  

             quantity force: in real 
 ); 

end entity mass_e; 
architecture mass of mass_e is 
begin 

            x:  m*x'dot'dot + d*x'dot + u*x - 1*force == 0; 
end architecture mass; 
 

Entities for calculating velocity and acceleration are not necessary for 
simulation, but are used just to print out the appropriate results: 



Alecsis  - the simulator 
 

 
 
 

90 

 
entity velocity_e is 

  port (quantity x: real; 
        quantity v: real 

 ); 
end entity velocity_e; 

architecture velocity of velocity_e is 
begin 

  v:  1*v - 1*x'dot == 0; 
end architecture velocity; 
 

 
 
entity acceleration_e is 

  port (quantity x: real; 
         quantity a: real 
 ); 

end entity acceleration_e; 

architecture acceleration of acceleration_e is 

begin 

        a:  1*a - 1*x'dot'dot == 0; 
end architecture acceleration; 
 

The model stimulus is described in AleC++: 
 
module Force (flow force) { 

 action (double force_value) { 

  double force_out; 

  process per_moment { 

   force_out = force_value*exp(-now); 

   eqn force: {force} = force_out; 

  } 

 } 

} 
 

In order to simulate the system all models are instantiated and appropriate 
simulation control parameters are defined in a root module described in AleC++: 
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#include <alec.h> 
#define Period 15. s 
module mass_mod(flow x, force) action(double m, double u, 

double d); 
module velocity_mod(flow x, v); 
module acceleration_mod(flow x, a); 
 
library "mass"; 
library "velocity"; 
library "acceleration"; 
 
module Force (flow force) { 
 action (double force_value) { 
  d ouble force_out; 
  process per_moment { 
   force_out = force_value*exp(-now); 
   eqn force: {force} = force_out; 
  } 
 } 
} 
 
root eq() { 
 flow n0, position, velocity, acceleration; 
 mass_mod p; 
 Force F; 
 velocity_mod V; 
 acceleration_mod A; 
 
 p(position,n0) {m=1; u=1; d=0.35;} 
 F(n0) {force_value=10;} 
 V(position,velocity); 
 A(position,acceleration); 
 
 timing {tstop = Period; a_step = Period/1000;} 
 plot {flow position;flow velocity;flow acceleration;} 

} 
  

VHDL-AMS models have to be compiled first into the AleC++ object code 
by using VHDL-AMS compiler. Then, the whole system is simulated using 
Alecsis. 

The mixed-language simulation results are shown in Fig. 5.48. Traced 
signals are positon, velocity and acceleration, respectively. 
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Fig. 5.48. Simulation results of the oscillating mass shown in Fig. 5.47. 
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 5.17.  Bouncing ball -- discontinuity example 
 
 Most of classical simulators cannot cope with the discontinuity of the 
system's behavior when it occurs during the simulation. This means that systems 
that have response that is not differentiable cannot be simulated with such 
simulators. Primary reason is the way in which a simulator works: for finding the 
solution in one time point it needs solution(s) in one (or more) past point(s), 
depending on the integration method. 

 Excellent, while simple example of discontinuity is bouncing ball. 
Discontinuity occurs when the ball reaches ground. The sign of velocity is changed 
and the ball rebounds. It is of crucial importance to extract the "discontinuity" 
instant, so that the simulator can react by calculating new initial conditions. 

 The idealized ball’s trajectory is described by the equation: 

 
d x
dt

g
dx
dt

2

2

2

0+ + ⋅
⎛
⎝⎜

⎞
⎠⎟ =ρ      (5.11) 

where g is the gravity constant and ρ the air damping coefficient. 

Fig. 5.49:  Simulation results for bouncing ball 

 Discontinuity is determined when x falls down to zero. The results of the 
simulation are given in Fig 5.49. Lost of energy due to the impact is not considered 
in this example. 
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5.18 Modeling of D/A interface for mixed-mode behavioral 
simulation 

 
The design of electronic and telecommunication integrated circuits is 

unavoidably faced with simulation of analogue subsystems of ever rising 
complexity thereby building more complex mixed-signal systems containing both 
analogue and digital parts. Design of such systems needs simulation tools that 
perform fast and accurate in the same time. Main obstacle to this requirement is 
related to the difficulties in high level modeling of the analogue part and accurately 
enough modeling of the digital-analogue (D/A) and analogue-digital (A/D) 
interfaces being frequently encountered in such systems. In fact at the (D/A) 
interface one needs to model the output circuit of the digital part in order to enable 
electrical excitation for the analogue load. In the opposite case, at the (A/D) 
interface, we need to model the input impedance of the digital part in order to 
establish conditions for computation of the voltage and current at the interface. 
Having in mind that the simulation is performed in the time domain, the fact that 
we are dealing with mixed-level simulation, and the complexity and non-linearity 
of the circuits involved, one generally applies behavioral modeling for these 
purposes.  

We will consider here the situation when the signal is transmitted from the 
logic to the analogue element, and then we need digital to analogue conversion. 
Since the load is analogue, there is a problem in generating of the signal waveform 
on the output of the digital circuit. Modeling of D/A node is very complex because 
one needs to get the waveform of the signal that drives the analogue part of the 
circuit out of the set of logic states. The conversion algorithms are mostly based on 
the synthesis of the electronic circuit that replaces the logic element, and that is 
applied as excitation to the actual node. The propagations of the logic elements 
should also be considered. 

The following solution is based on artificial neural networks. It is 
considered very convenient because the function is approximated using the 
measured values, and no electronic circuit synthesis is needed. 

A new topology of the circuit is proposed for this purpose, being depicted 
in Fig. 5.50. 
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Fig. 5.50. Circuit representation of the model 

An inverter is considered here, and vin stands for a controlling ramp-shaped 
voltage-waveform,  

[ )(th1)( TmaxT vvIvvi inin ]−−=− ,    (5.12) 

and Z is a time delay recurrent neural network approximating the function  

)(iZvout =        (5.13) 

Imax is the maximal supply current during the transition in the inverter, and 
vT is (usually) equal VDD/2, VDD being the supply voltage. Obviously, the ANN 
model of Z has one input (current) and one output (voltage) terminal. The training 
of the network is performed based on training pairs (i(t), vout(t)), where i(t) is 
calculated from (5.12) while vout(t) is obtained from simulation of the circuit to be 
modeled (here inverter). The neural network is a time delay recurrent network (Z), 
with one hidden layer, five input, three hidden and one output neuron. 

Inverter has only one input, so the value of vin voltage is only one. When 
we are dealing with multi-input circuits, there exist more input voltages because for 
every combination of inputs there is corresponding output impedance. Also, there 
is a problem with sequential circuits because the output state depends on input 
states, as well as on previous output state. During the logic simulation, there always 
exists information about the events and time of their happening, so it is known 
what inputs caused certain state and which impedance should be applied to the 
certain node. 

The first results are shown in Fig. 5.51. Here output waveforms of the 
original inverter and the model are shown in order to show the quality of the 
approximation procedure. Unloaded circuits are simulated. A behavioral simulator, 
Alecsis is used to exercise such model. 
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Fig. 5.51.  Digital-analogue interface modeling a) response of an unloaded CMOS  

inverter (considered as digital output) and b) of the new model 

The following three examples are intended to check the modeling 
procedure based on situations not present during the training procedure. Fig. 5.52 
represents two responses. The first trace is the output voltage of an inverter (all 
modeled by regular transistor models) being loaded by inverter. The second one 
represents the response of the same circuit with ANN model used for the driving 
part and circuit model for the loading. This situation was unknown in the modeling 
process. 
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Fig. 5.52.  Digital-analogue interface modeling. a) response of an inverter loaded 

by inverter and b) of a model loaded by inverter 
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Further, Fig. 5.53 represents similar comparison the loading element being 
a transmission line modeled by a π -RC network. 
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Fig. 5.53. Digital-analogue interface modeling. a) response of an inverter loaded by 

RC π -network and b) of a model loaded by RC π -network 

 

Finally, a diode load was used to demonstrate the successfulness of the 
ANN model in the case of “large” non-linear dynamic load. The comparison of the 
circuit simulation and behavioral simulation are given in Fig. 5.54. 
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Fig. 5.54. Digital-analogue interface modeling. a) response of an inverter loaded by 

diode and b) of a model loaded by diode 
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5.19 Frequency domain simulation 
 
In addition to time-domain simulation, Alecsis simulator also enables the 

frequency domain simulation. Following examples illustrate this feature. 
In order to implement AC domain simulation input language of Alecsis 

simulator had to be extended. First a new command ac for AC analysis has been 
added. E.g.  

ac {fscale=2;fstart=10;fstop=1G;fnum=100;}  

The AC analysis works with complex numbers, and since AleC++ is an 
object oriented language, all the variables have been added following properties: 
amp (amplitude), phase (phase), real (real part) and imag (imaginary part). 
E.g. output->phase gives the phase of the output. Also a dc_value property 
is added providing the value of the variable after dc simulation, which can be very 
useful during small-signal modeling.  

New types of independent generators have been added as well. Those are 
vac - voltage and cac - current generator. They accept following parameters: amp 
- amplitude and phase - phase of the signal.  

The lists of parameters for any type of controlled sources have been 
extended. For example, voltage controlled voltage source, beside the gain, that 
now becomes real part, igain parameter has been added, representing the 
imaginary part of complex gain.  

New type of process with per_frequency synchronization has been 
supplied, providing the user to write AleC++ code to be processed per frequency. 
Operator currfreq is introduced, returning the current frequency of the 
simulation. Operator domain returns the current simulation domain.  

In order to enable the behavioral simulation in frequency domain, 
equations with complex matrix entries are implemented. There are three types of 
equations: simple, through and across.  

Behavioral description of a capacitor using through eqn statement is:  
module my_capacitor (node i, j){  
  action (double value=1.e-15){  
...  
    process per_frequency { 
      double y = 2*M_PI*value*currfreq;  
      eqn {i, j}.i = y*{i->im, j->im}.v;  
    } 
  } 
} 
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All these features, along with object-orientedness of the AleC++ provide a 
powerful tool for behavioral frequency domain simulation.  

As a simulation example for passive circuits, a ten stage crystal band-pass 
filter shown in figure 5.55.a has been simulated. Obtained amplitude characteristic 
is shown in figure 5.55.b. 
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Fig. 5.55.a: Ten-stage crystal band-pass filter 

999.0 999.2 999.4 999.6 999.8 1000.0 1000.2 1000.4 1000.6

frequency [kHz]

|2
V

ou
t | 

[V
]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 
Fig. 5.55.b: Amplitude characteristic 

As an example for simulation of active circuits, two-stage frequency 
compensated MOS amplifier, shown in Fig. 5.56, was simulated. Transistor M13 
has a function of a zero-canceling resistor. Transistors M14, M15 i M16 bias this 
transistor. 

Fig. 5.57 gives the simulation results for variation of channel width of the 
M15 transistor. 
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Fig. 5.56: Two-stage operational amplifier 
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Fig. 5.57: Amplitude and phase for the variation of channel width of M15  

The following example illustrates the fully behavioral description using 
controlled sources. Fig. 5.58 shows the simulated circuit. Block named core can 
model virtually any circuit. All the parameters of the block (here h - parameters) 
can be assigned functions of arbitrary complexity. Combination of circuit and 
behavioral model is used. Sample of simulation code in AleC++ shows how one of 
the core parameters is calculated. The results of the simulation are depicted in Fig 
5.59. Complex class enables complex arithmetics. 
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Fig. 5.58: Simulated circuit 

#include <complex.ac> //complex class 
... 
root module test_circuit() 
{ 
  IP_core ip; 
... 
  ip (3, 0, 4, 0); 
... 
  action per_frequency (){ 
    double h210 = 100 + 1.5*(VDD - 6); 
    double w = currfreq/(2*M_PI); 
    double wz1 = 10/(2*M_PI); 
    complex s(0, w); 
    complex h21 = h210*(s/wz1+1); 
... 
    ip->h21r = h21.real; 
    ip->h21i = h21.imag; 
... 
  } 
  ac{fscale=2; fstart=1; fstop=10MEG; fnum=10;} 
} 
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Fig. 5.59: Simulated results: output voltage for variations of  

a) Vdd and b) W/L ratio of the M1 transistor 
Another example represents the behavioral modelling of the BJT. Sample 

of the AleC++ code shows how capacitors are modeled behaviorally using eqn 
statements. 
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Fig. 5.60: Ebers-Moll model of the BJT 

#include <alec.h> //standard header 
... 
     process per_frequency { 
      double Vbe_dc, Vbc_dc, alpha, gdbe, gdbc, cbe, cbc;  
      alpha = 1/vt;  
      Vbe_dc = (node) b->dc_value - (node) e->dc_value;  
      Vbc_dc = (node) b->dc_value - (node) c->dc_value;  
      gdbe = i0/vt*exp(alpha*Vbe_dc);  
      gdbc = i0/vt*exp(alpha*Vbc_dc);  
      cbe = tau*gdbe //diffusion component 
           + Cbe_junc*pow((1-Vbe_dc/vt), -0.5); 
                     //junction component 
      cbc = tau*gdbc //diffusion component 
           + Cbc_junc*pow((1-Vbc_dc/vt), -0.5); 
                     //junction component 
      eqn {b, e}.i = gdbe*{b, e} - ar*gdbc*{b, c} +  
                     2*M_PI*cbe*currfreq*{b->im, e->im}.v; 
      eqn {b, c}.i = gdbc*{b, c} - ar*gdbe*{b, e} +  
                     2*M_PI*cbc*currfreq*{b->im, c->im}.v; 
    } 
... 
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5.20 Space-continuous analogue systems 
 

Circuit simulation normally uses so-called lumped models – continuous in 
time, but discrete in space. However, deep submicron designs and mixed-domain 
systems (semiconductor sensors and actuators) often demand introduction of 
models that cannot be correctly defined with lumped models. 

A solution can be to define space-continuous models as a set of lumped 
models. In standard circuit simulators, this can lead to extremely large input files, 
which also makes design errors intraceable. However, AleC++ posses a mechanism 
to define arrays of lumped analogue models using simple syntax costructions. For 
instance, array of finite elements that describe thermal or mechanical behavior can 
be contained in a module named elementary_matrix. An array of such matrices 
can be defined in process structural: 

 
module finite_element model( … ) { 
 
   /* declaration */ 
   module el_matrix EM; 
   node n1[auto]; // declaration of nodes 
   node n2[auto]; // that will be dynamically 
   ….             // allocated 
 
   /* structure is here omitted, as it 
      will be given in process structural */ 
   action(double size_n1, 
          double size_n2, 
          double no_of_elems) { 
      process structural { 
         allocate n1[size_n1]; 
         allocate n2[size_n2]; 
         int i; 
         for (i=0; i<no_of_elems; i++) { 
            clone EM[i] (n1[i-1],n2[i-1],...); 
         } 
 
         … 
      } 
   } 
} 
 

This feature had been extensively used in Alecsis for transmission line 
modeling, micromechanical systems simulation, thermoelectrical simulation, and 
smart-material analysis. 
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In Fig. 5.57, finite element simulation results obtained using ANSYS 
simulator for temperature distribution on a chip are shown. Fig. 5.58. shows the 
same results obtained using Alecsis. The relative error is smaller than 0.005% for 
static analyses. Comparable results may be achieved in transient simulation with 
coupled electronic components. 

 
Fig. 5.57. Temperature distribution on the chip (ANSYS results) 

 
Fig. 5.58. Temperature distribution on the chip (Alecsis simulation/MathCAD 

visualizatison) 
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The application of mixed-domain simulator with analog hardware 
description languages and mixed analog/digital simulation seems to be promising 
for this class of engineering problems. 


