
5. Basics of simulation in Alecsis 

The previous chapters were an overview of concepts already familiar from C/C++, and were meant as an 
introduction to AleC++. The topic of this and following chapters are constructs of AleC++ not found in C/C++. 

Alecsis 2.0 is a hybrid simulator, which means it is capable to simulate both digital and analogue circuits. To 
state it more generally, Alecsis can simulate both discrete-event and time-continuous systems. This is not a trivial 
problem, since the techniques of solving these two kinds of systems differ very much. Analogue circuits are 
simulated using Kirchhoff's laws, thus solving systems of differential equations describing a particular circuit. 
Digital circuit are simulated using logic states on the inputs, and logic functions determining the output. Where 
these two types meet A/D or D/A conversion is necessary. 

Alecsis is an integrated simulator, which means the algorithms for both kinds of simulation and the 
conversion process are inseparable. That is, Alecsis is not a case of two simulators "glued" together using special 
mechanisms of synchronization. AleC++ allows mixing of various analogue and digital elements and constructs, 
and the user is the only judge of the usefulness of this capability. In this Manual, we will point out the price of using 
certain constructs in terms of memory, speed, etc. 

The simulation engine of Alecsis controls and manages two basic mechanisms, solving of systems of 
equations represented using sparse matrices, and synchronization of parallel processes and signals in digital 
components using the next event principle and selective trace principle. Both mechanisms use the services of the 
virtual processor, whose role is to execute (interpret) instruction generated by AleC++ compiler and linker. The 
topology, and characteristics of the circuit is defined by the user regardless of the type of the circuit in question. 
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5.1. Module concept 

When the relative complexity of C++ is considered, the user might get the wrong impression that even the 
simplest simulation demands hundreds of pages of code,. The example will show what we mean: 

root module example_1 () { 
    resistor  r1; 
    capacitor c1; 
    vpwl      vin; 
 
    r1  (input, output) 2k; 
    c1  (output, 0)     5pf; 
    vin (input, 0)      { 0ns, 0v; 1ns, 1v; } 
 
    plot { node input; node output; } 
    timing { tstop = 100ns; a_step = 1ns; } 
} 

This is an example of a simple RC circuit with the impulse input of 1V. The impulse is generated using a 
generator of piecewise-linear voltage vin. Besides the topology of the circuit, the root module contains the 
printout format and the data on the duration and the step of the simulation. Such special statements that control the 
simulation flow can appear in root module only. The result is shown in the Figure 5.1: 

 

Figure 5.1: The result of the RC circuit simulation 

The module is the basic element of hierarchy in the hardware description language AleC++. It is used for 
both discrete-event and time-continuous models, even for A/D (D/A) converters. In C, the execution of a program 
begins and ends within the main function. In Alecsis, the hardware hierarchy begins and ends in the module 
named root. Modules have a lot in common with the C-functions, beginning with the syntax, similar interface, to 
the visibility rules. The similarity is intended since the intention was to keep the spirit of C/C++. On the other hand, 
modules have something in common with classes as well, since they define new types of components, which can be 
used evenly with the built-in components. 
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5.2. Link 

Link is the common term in AleC++ defining all types of entities used for connecting components. This term 
is vague by definition, since it is treated differently for the cases of analogue and digital components. There are five 
different links: node, current, charge, flow, and signal. These are key words used for link 
declarations, i.e. they represent link type. Links can be also of user-defined type, i.e. they can be structures, scalars, 
and vectors, can be initialized, etc. In these characteristics they remind us of variables, and in deed in particular 
context links can be used in expressions as variables. However, links are very different from ordinary C/C++ 
variables, as they are unknowns in the circuit representations, and the simulator engine is used to solve for 
them. 

The first four mentioned link types (node, current, charge, and flow) are analogue. They are used 
for description of analogue components, and appear as unknowns in the system of ordinary differential equations. 
The value of the link is evaluated by solving the system of equations. These four link types have the same 
implementation, but differ in their physical meaning. Node is the basis for the analogue part of the simulator, since 
it represents the physical link - conductor, and because the system matrix is formed using nodal analysis method. 
The variables of link type node are actually representing the node voltage. This method is expanded in Alecsis (as 
well as in all well-known simulators, including SPICE) to include the elements of zero resistance (voltage sources, 
inductors, etc.) Such an element generates new (branch) equation, and the branch current appears as the 
variable. Charge is used for nonlinear capacitance modelling, to allow separate discretization and linearization of 
the model. Flow is a keyword for a general analogue link, whose physical meaning is not given in advance. This 
separations of analogue circuit unknowns is due to physical differences, in order to control the convergence 
tolerances separately. The absolute tolerance for flows is not given in advance, but can be defined by the user. 
When used in expressions, referencing the name of the analogue link relates to its value obtained in the last solution 
of the system of equations. 

Signals differ significantly from other link types. Signals are links that carry some logic value. Digital 
systems in Alecsis are modelled as parallel processes. Signals are used for synchronization, too. Signals can be 
read-only, write-only, or both. Every signal has associated memory according to link data type, which contains its 
current value. That value is obtained if the signal name is used in an expression. 

If the link type is signal, the link by default has digital aspect if not explicitly defined with analogue 
aspect. If a link is connected to a component whose fundamental type (A or D) does not agree with the link aspect, 
the component has a dual, or hybrid aspect. Links wit hybrid aspect make the simulator generate A/D (D/A) 
converters. 

Note: The link declaration has the link type and the link data type. The link type can be node, current, 
charge, flow, signal, or some composite type made of these basic types. The link data type refers to type of 
its value (i.e. variable type - double, int, enumeration type, ..). The following declarations are legal: 

node double X; signal three_t Y; 
There are default link data types. It is clear that the node or flow would have value of type double, so 

there is no need to mention that explicitly. However, for signals it is usual to state the type explicitly, as it is 
normally some enumeration type. 

5.3. Module declaration 

Modules have prototypes in much the same way as functions do. Module has architecture, and interface for 
communication with the surroundings. The prototype declaration is related to its interface. The declaration allows 
the compiler to check the agreement of actual with formal links on when the component of the module type is 
referenced. 

prototype_module: 
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  module <flow_sc> <library_name .>module_name ( <list of formal links>) 
 
flow_sc: 
  current 
  charge 
  flow 
 
list_formal_links: 
  formal_group 
  list_formal_links ; formal_group 
 
formal_group: 
  < link_type > <type> <direction> list_links 
 
list_links: 
  link 
  list_links , link 
 
link: 
  link_declarator <= constant_expression> 
 
link_declarator 
identifier 
  link_declarator [ <vector_dimensions> ] 
 
link_type: 
  signal 
  node 
  flow_sc 
 
direction: 
  in 
  out 
  inout 

Module has its name, which can be used evenly with the names of built-in types of components, such as 
resistor, capacitor, etc. Modules can return the link. If the link type is missing, type node is inserted by 
default, except in the case of the enumeration link, where signal is default. If the link data type is missing, the 
default for analogue links is double, and for digital int. Direction refers exclusively to signals, and is in by 
default. Initial values can be defined for signals as an option. 

typedef enum { 'x', '0', '1' } digital3; 
struct Net { digital3 send, recv, ack; }; 
 
module X (i, j);                      // two node links - i and j 
module Y (digital3 in a, b; digital3 out y); // signals  
module Z (signal digital3 in a[]="001"; signal Net out network); 
module current misc.M (node i, j);    // library "misc" 

These examples of module declaration encompass all of the rules. Module Z contains the declaration of the 
first formal link a as a digital vector, whose dimensions are not defined. As with functions, the dimensions of the 
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vector will be defined when the actual vector comes to that position due to the module connecting. By default the 
dimensions of the vector is 3, based on the initialization expression - enumeration string "001". Module M expects 
two nodes i and j, and returns the current under its name. Explicitly defined library (misc, and separator .) 
instructs the linker to look for the body of the module in the mentioned library (without searching all of the 
available libraries). If more libraries are visible, all containing a module with the same name the concept of the 
explicitly defined library will solve the dilemma. 

Formal links do not represent unique entities, just references to real links on the module interface. These 
declarations are usually found in header files included by using command include. More than one declaration 
for the same module can be found in the same file with the condition that all those declarations overlap, or append 
each other. 

Note: Module definition is valid also as a declaration for the following code, which is why carefully 
placed definitions can render declarations unnecessary. However, if modules are compiled, and stored in libraries, 
prototypes (declarations) of modules are necessary and have to be added using statement include, if they are 
gathered in one header file. 

5.4. Module definition 

Declaration of a module is helpful to the compiler during numerous checks. The definition of the module 
gives its actual content. The definition of a module can be compiled and stored in some library, since modules are 
external units, that is they are subject to linking operations. 

Modules can be defined on the global level only, and cannot be nested. Note that more than one definition of 
a same module in same file is an error, which was not the case with declarations. Definitions repeat the declarative 
part, but also contain the body of the module. The body of a module is bounded by characters '{' and '}'. 

The module architecture depends upon the modelling approach of a particular electronic component. The 
component can be digital, analogue, or hybrid. It can be represented structurally, as a collection of connected 
components, functionally, using constructs based on commands, or using a combination of both approaches. For 
each approach, a region exists in the body of the module where those constructs are allowed. 

 
module_definition: 
 module_declaration { module_body }  
module_body: 
 <declarative_part >  < topological_part  >  < functional_part > 

The body of a module can have all three, or none of the mentioned regions, but the former case has no 
practical implications. 

5.4.1. Declarative part 

The body of a module may contain some entities (links and components) that are local, i.e. used only inside 
that module. AleC++ needs them declared before they are used, which is a rule from the languages making its basis. 
Visibility of local links is the same as with local variables, being the body of the module, with the notion that local 
links duration is the whole the simulation (like static variables). 

The syntax of the declaration is similar to the one for the interface, just the direction is not stated. Direction 
is by default inout for signals, and does not make sense for other links. 
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signal digital3 matrix[][4] = { "0011", "011x", "1101", "10xx" }; 
node vdd, vss; 
digital3 clock = '0', mask[3:0] = "0010"; 

As with the variables, signals-vectors can be initialized and can have inverse dimensionality. If link data type 
is enumeration type, the link type can be omitted, as it must be signal. If the link data type is left out, defaults are the 
same like for formal links: int for signals, and double for others. 

There are cases when local links need not be declared before they are used. If an undeclared name appears 
during the component connecting, a (scalar) node of the same name is implicitly defined, with the same 
characteristics. This rule makes it easier to use Alecsis for the users of SPICE, which does not demand nodal 
declarations. 

Component declaration introduces names, and links them to the component type. The declaration consists of 
the type of the component, and the list of elements which can be used for modelling. 

resistor r1, r2;  
capacitor cload, cs; 
module rsff ff1, ff2; 
rsff ff3; 
module ttllibrary.ff3; 
module frsff (digital3 in reset, set; digital3 out q, qbar) ff4, ff5;  

If the type of the component is module (i.e. not a built-in Alecsis component) it can be cited with or without 
the key word module (as with structures/classes, the key word needs to be used if the name rsff is masked). It 
is legal to give the name of the library (the row before the last), and even the complete declaration (the last row). If 
the complete declaration appeared somewhere in the previous text, it is sufficient to give the name of the module for 
the name of the component. 

There is a possibility to skip the component declaration, again to make Alecsis comfortable to SPICE users. 
The compiler can, based on the name of the component, determine the type (see the paragraph on implicit 
constructs). 

5.4.2. Structural part 

We will focus on the component connecting and the definition of their parameters in this section. To connect 
components, we list their names and actual links, and perhaps the values of the parameters: 

r1 (n1, n2) value = 2k; 
r2 (n2, 0) 3.3k; 
cload (load, 0) 15pF; 

The syntax of connecting is: 

component: 
  name  ( <list_actual_links>)  parameters 
 
list_actual_links: 
  static_link 
  list_actual_links , static_link 
 
static_link: 
  name_of_link 
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  static_link  [ constant_expression ] 
  static_link [ constant_expression  :  <constant_expression> ] 
  static_link . structure_member 
 
parameters: 
  ; 
  paremeter_value ; 
  {  list_parameters  } 
 
list_parameters: 
  parameter_in_list 
  list_parameters_of_ parmeter_in_list 
 
parameter_in_list: 
  parameter_name= parameter_value ; 
 
parameter_value: 
  constant_expression 
  parameter_name = parameter_value 

Actual link can be a scalar, but also a composite link type (vector, structure ...). The link of composite type 
can be for used for connecting as a whole, by citing its name, or one can use only some of its members. Indexing 
can be used if the link is an array (vector, matrix, etc). The notion of a static link is applied either to the link, or to 
any of its parts, which can be fully determined during the compiling. For that reason, it is necessary that the index is 
a constant expression. We will return to static links when further describing syntax of AleC++. If the link which is 
an array is indexed using two expressions and character ':' between them, its dimensionally is not changed, but its 
boundaries are changed (reduced). The result of this operation is called slice. 

signal digital3 s, v[10], m[3][4], v2[15:0]; 
signal Net data; 
... 
c (s, v[1], v, m, m[2], m[2][1], v2[9:7], data, data.ack); 

In this example, component c is connected using 9 links: scalar s; scalar from the position 1 of vector v; 
vector v of length 10; matrix m of length 3x4; vector of length 4 from the position 2 of matrix m; scalar from 
position 2,1 of matrix m; slice of vector v2 from position 9 to 7 (still a vector); structure data; and a scalar 
ack, member of the structure data. The compiler is responsible to determine if this list of arguments agrees with 
the prototype of module of component c. From the syntax standpoint, this is a legal list of actual links. 

Alecsis is equipped with a few, but carefully chosen set of predefined (built-in) components. These are 
fundamental components, which are often used in electronic circuit. They can be also used as the basis for 
modelling of other components (you can find this explained in detail in the chapter on analogue simulation). The 
number of component parameters varies from one component to another. Simpler ones take only a single parameter 
of double type under the name value (resistor resistance, coil inductance, etc). In this case only a numerical 
value can be given. If there are more parameters, their list needs to be bounded by parentheses. 

cload (load, 0) 15pF; 
cs (n2, 0) value = 10pF; 
mos1 (n1, n2, 0, 0) { model = nmos1; l=2u; w = 3u; } 

Components of type module can have parameters, too. Their syntax does not differ from the one for built-
in components, however the declaration needs to be expanded to include the names, and types of legal parameters. 
We did not talk about this up to this point, since this goes into functional simulation. 
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5.4.3. Functional part -- action block 

Electronic component (subcircuit) can be defined functionally in several ways: 

• By defining a logic function of the component . This is purely functional approach for the digital 
aspect. 

• By stating the model equations. They contribute directly to the system of equations for the whole 
circuit (system). This is purely functional approach for the analogue aspect. 

• By defining and equivalent circuit topology, and calculating the parameters of the components in that 
equivalent circuit in AleC++ code. For instance, nonlinear model can be represented as equivalent 
linear circuit whose parameters are changed in every iteration. This is a combined approach for the 
analogue aspect. 

• By combining all approaches given above - combined approach for hybrid aspect. 

To realize this functional description, we need a part of the module body where C/C++ -like code can appear. 
A region of the module body beginning with the keyword action is used for that. This functional region is 
bounded using parentheses, creating a narrower visibility area, which allows masking of elements, local and formal 
links, etc. If our module accept parameters, they are actually accepted by the action block. For that, in module 
definition, you need to give a list of action parameters as if a prototype of a function is created: 

module X () { 
    ... 
    action (int n, double p, char *name="initial value")  
    {   /* the code describing fucntional description */   } 
} 

As was the case with function parameters, action parameters can have default values. We recommend this 
approach, since it allows the correct work of the component even if the parameters are not set during connecting. 

Absence of action parameters can be signalled by type void, parentheses without parameters '()', or by 
leaving out parentheses after the action keyword. Action can be defined with a variable number of parameters 
using symbol '...' as it is defined in the chapter on functions. 

Action parameters are added to module declaration: 

module and2 (digital3 in a, b; digital3 out y)  
                      action (double tplh=10ns, double tphl=10ns);  
 
 
module X () { 
    digital3 s1, s2, s3; 
    and2 a1, a2; 
 
    a1 (s1, s2, s3) { tplh = 11ns; tphl = 13ns; } 
    a2 (s3, s1, s2) action (11ns, 12ns);     // alternative method 
} 

As you can see in the example above, components that have module type (not built-in) can utilize another 
method of parameter setting, too. It resembles function calls, because a list of arguments follows the word 
action. Linking of parameters and arguments is done by position, which is different from the commonly used 
associative method. As was the case with the functions, parameters with initial values can be left out. 
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Note: Action parameters can be used bidirectionally, i.e. they can return the value. They are passed by 
reference, unlike parameters of C function, which are passed by value. For one application of that feature see 
explanation of plot command in this Chapter. 

 If, for instance, action block in some module expects parameter of type 
double, and you connect that module in the parent module with the 
appropriate action parameter as integer constant, the simulator will not 
issue any warning, but will not give you expected results. The reason is 
that an implicit conversion is performed, since the parameter is passed by 
reference. This is, however, usually not what you wanted. Be careful 
with action parameters -- always pass the constant or variable 
parameter of correct type. 

 In the following versions of Alecsis, warning will be issued for such 
cases. 

Note: Action parameters of one component can be accessed from other components using indirection 
operator ->. For instance, if module X in the example above has its own action block, inside that action 
block you can access action parameters of component a1 as 
a1->tplh, a1->tph. (component name behaves as the pointer to the structure comprising of its action 
parameters). For another application of that feature, see section on plot command in this Chapter. 

All variables local to the action area last throughout the simulation, and are therefore static. This is 
important, since action block can be executed many times during the simulation run, and the variables must not 
be reset. However, each separate component has a separate memory, different from the memory for other 
components of the same type. If needed, some variables can be defined static. These variables are similar to 
static members of classes in that memory reserved for them is common for all components of the same type in the 
circuit. This means change to the value of that variable in one component will ripple to all other components of the 
same type. Since this allows communication using the "back door", circumventing action parameters and links, 
great care needs to be exercised in order to avoid unwanted effects. 

Action block is where functional behaviour of the module is defined. If the action block is left out, 
module is a set of components connected in a desired way. In that case, module represents only a subcircuit, 
and is used to describe the whole circuit hierarchically. 

5.4.4. Modelling of parallel processes 

It should be noted that all components in a circuit (system) are active simultaneously, or, in programmers' 
terminology, in parallel. To enable Alecsis users to describe that parallelism, and to control execution of parallel 
blocks, we have introduced process into the functional description. Processes are described inside the action 
region. 

The action region is divided into the declarative part and the command part. 

action_region: 
  action <trigger_sc> <(<parameter_declaration>)> <action_body } 
 
action_body: 
  <declarations> <commands> 
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commands: 
  command_list 
  process _list 
 
process_list: 
  process_command 
  process_list process_command 
     
process_command: 
  <process_name :>  process  <sinhro> { <commands> } 
 
sinhro: 
  trigger_sc 
  ( sensitivity_list) 
 
trigger_sc: 
  structural 
  post_structural 
  initial 
  per_moment 
  post_moment 
  per_iteration 
  final 
 
 sensitivity_list: 
  static_link 
  sensitivity_list ,  static_link 

The process is the backbone of functional modelling in AleC++. The processes are given in the 
action block, and they consist of commands. Those commands are executed during the execution of the 
simulation. The processes ought to be synchronized. 

In discrete-event simulation, signals synchronize processes. The event has happened when a state (value) of 
a signal is changed. All processes sensitive to that particular signal become active when such event happens 
(commands of the process are executed). After that, processes sensitive to that signal are in inactive state, or 
latency, until new event happens. This agrees with the concept of logic states, events, and transfer of signals 
throughout the circuit in digital (discrete-event) simulation. A process can be made sensitive using the 
sensitivity list, which lists all signals whose change can activate the process. As was the case with actual links, 
we can list signals, signals with indices, or, if the signal is a structure, a member of the structure. Process is 
activated if a change occurs on any of the listed signals. In the case of a composite signal, an event has happened if 
an event has happened on at least one of its scalar elements (positions of a vectors, or members of a structures).  

Sensitivity list must be avoided if the process has wait command (see the section on the wait command). 

If the process does not have a sensitivity list, wait command, and is not synchronized in any other way, 
it becomes a world on its own, and is useless as far as simulation is concerned. 

More than one process can be sensitive to a particular signal. When an event happens on the signal, these 
processes are executed by the simulator one by one, but they appear as parallel from the point of view of circuit 
functionality. 
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In analogue circuit simulation, different synchronization mechanism needs to be implemented. Analogue 
components are active all the time, since they contribute to the system of equations that is repeatedly formed and 
solved during the simulation. As Alecsis is used for time-domain simulation of nonlinear circuits, there are two 
loops: the time-loop (outer), where simulation is executed in many discrete time instants; and iterative loop (inner), 
where, in every time instant, nonlienar circuit is solved iteratively. From that point of view, no synchronization is 
necessary. However, synchronization of processes is very useful in analogue simulation, too. If a component is 
linear and time-independent, as resistor, there is no need that it is executed in every time-instant, and in every 
iteration. The appropriate process can be executed once, before the actual simulation starts, which saves CPU 
time. If a model is linear, but time-dependent, the process can be synchronized to be executed in every time-
instant, but out of the iterative loop. 

For synchronization of analogue processes, some internal synchronization signals are generated and 
controlled. The value of these special signals cannot be accessed in expressions, it can be used for process 
synchronization only. These signals are: 

♦ structural - activated before the simulation, during the creation of a hierarchical tree, that 
represent the circuit hierarchy in simulator memory. It is intended to be used for processes 
that contain command clone, that creates array of components (or subcircuits). As the 
command clone results in a change of the circuit structure, it has to be executed before the 
simulation starts, and before the circuit hierarchy is formed in the simulator memory. 

♦ post_structural - Activates before the simulation, after the current hierarchical level is 
complete. It is used for modification of signal attributes (see section on user-defined 
attributes). 

♦ initial - Activates only once, at the beginning of the simulation, when time t=0. Usually 
used for some intializations, but also to calculate contributions to the system matrix that are 
not changed during the simulation, i.e. that need not to be calculated inside the time loop and 
the iterative loop. 

♦ per_moment - Activates in every new time instant of the simulation t=tn+1 before solving 
the system of equations. It is intended to be used for modelling of linear but time-dependent 
contributions to the system matrix (e.g. linear capacitors, linear time-dependent voltage or 
current sources, etc.). Usage of link name in expressions in such process returns its value 
from the previous (last solved) time instant (t=tn) 

♦ post_moment - Activates in every time instant after reaching the solution of the system of 
equations. Processes, which need solution from the moment t=tn+1, use this 
synchronization. If a circuit consists of digital elements, and links, solving the system is 
unnecessary, so this and the previous synchronization signal are activated simultaneously. 

♦ per_iteration - If the circuit has analogue elements, this synchronization signal activates 
in every new iteration before solving system of equations. If there are n time instants, and m 
iterations in every time moment, processes sensitive to per_iteration signal are active m 
x n times. Used for nonlinear analogue elements, where contributions of the linearized model 
to the system of equations are calculated in every iteration, until convergence occurs. If the 
circuit does not have analogue elements, these processes will not activate. 

♦ final - Pair with the initial signal - activates only once, at the end of the simulation. If 
a file is opened or memory is allocated in the process initial, this is the place where 
everything needs to be closed and ended. 

Some of the above mentioned signals can be very useful in digital applications, too, especially at the 
beginning or an end of the simulation. 
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All legal AleC++ commands except return can appear in a process, since the process cannot 
terminate (the whole simulation can be terminated using exit, but this a very rough solution). Command 
continue needs a small modification of standard rules; considering the cyclic nature of a process: usage of 
this command outside a loop means a jump to the first command and restart of the process. If the process is 
sensitive to signals this causes halt of the process until an event occurs on signals. You cannot jump from a 
process to a process using command goto. 

Every process creates a separate visibility area where local objects can be declared. All initializations of 
such object have to be static, that is have to contain constant expressions. Process objects, explicitly declared as 
static using key word static, are common for all copies of the process that are created by declaring more 
components of the given type. The rest of the objects, not explicitly declared as static, are unique for every 
copy of the process. 

There can be more than one process in an action block. If there is only one process in an 
action block, the keyword process can be omitted. In that case, synchronization signal is given after the 
keyword action. If no synchronization is defined, per_iteration is used by default.  

module X (digital3 in x, y; digital out z) { 
    action (double delay) { 
        int shared;       // common variable for all processes in 
                          // this action block 
        static nmodules;  // common for all components of type X 
        p1: process initial { 
             // initial activities 
             ... 
        } 
        p2: process (x,y) { 
             // activation on event on signals x or y 
             ... 
        } 
        p3 : process final {    // names p1, p2, p3 can be omitted 
             // final activities 
             ... 
        } 
    } 
} 
 
module Y (i, j) { 
    resistor r; 
    capacitor c; 
    action per_iteration { 
        // ... an analogue process 
    } 
} 

5.4.5. Variable number of action parameters 

The number of parameters in the header of the action block of the module can be variable. As 
action header resembles the header of the function, the technique for variable number of parameters is the same 
as for the C/C++ -like function, described in Chapter 4. 

#include <varargs.h> 
 
module ResistorWithTemperatureCoefficients (node i,j) { 
   resistor res; 
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   res (i,j); 
 
   action post_structural (double resistance, ...)  { 
      char *args; 
      double tnom = 300., tc1,tc2,tce; 
      tc1=tc2=tce=0.; 
 
      va_start(args, resistance);   // setting pointer args 
 
      if (tc1 = varargs(args, double))  // read other parameters 
         if( tc = varargs(args, double))  
            tce=varargs(args, double); 
 
      if (tce) 
         res->value = resistance*pow(1.01,tce*(temp-tnom)); 
      else if (tc1) 
         res->value = resistance*(1+tc1*(temp-tnom)+ 
                                tc2*(temp-tnom)*(temp-tnom)); 
      else 
         res->value = value; 
   } 
} 

Parameter temp in the example above is the user-defined temperature (see description of simulation 
options in this Chapter). 

 There are some differences in storing function formal parameters and 
action parameters. For that reason, alignment of parameters of type 
double using flag DWORD_ALIGNMENT is not necessary for action 
parameters, even for the computers that need that for C/C++-like 
functions. Moreover, you should be sure that this flag is not defined 
when file varargs.h is included 

 As we have pointed out for functions, functionality of macros defined in 
Alecsis varargs.h file depend on processor. Therefore, if you install 
Alecsis on computer that was not predefined in Makefile, some 
adaptations on varargs.h might be necessary. 

5.5. Implicit declaration of components 

SPICE deciphers the component type from the first few characters in the name of the component. All 
components in Alecsis need to be declared before connected. For some types of common components this can 
become rather tedious, and is not convenient for SPICE users. For that reason, we have enabled such implicit 
declarations in AleC++, but only as an option. Construct implicit is used to fulfil that. 

implicit_command: 
  implicit { association_list } <;> 
 
association_list: 
  implicit_association 
  association_list  implicit_association 
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implicit_association: 
  component_type list_names ; 
 
component_type: 
  built-in_type 
  module_declaration 

This implicit declaration defines one ore few characters that represent beginning of the component 
name. These characters are normally association of a component type. After such a declaration, all the components, 
whose names begin with these characters, have a declared type, and do not have to be explicitly declared. The name 
of the component has to be at least one character longer than the implicit symbol. In case of a conflict (two, or more 
suitable symbols) the longer is chosen. This command can be used many times in the text, but only on the global 
level. The care needs to be exercised not to make unwanted redefinitions. 

implicit { 
    resistor r, R; 
    capacitor c, C; 
    mosfet m, M; 
    bjt q, Q;   
    module rsff ff; 
    rsff rsf; 
} 
 
module X (i, j, k, l) { 
  r1 (i, 0) 2k;        // O.K. - resistor 
  R2 (j, 0) 4k;        // also 
  m1 (i, j, 0, 0) ...; // MOSFET 
  ff (i, j, k, k);   // error - the name is the same as the symbol 
  ff1 (i, k, k, k);    // O.K. - flip-flop 
  rsf1 (i, j, j, l); /* resistor or rsff? - rsff, since it 
                        is longer! */ 
} 

5.6. The root module 

Every hierarchical tree has a root. In AleC++, description of a hierarchy of an electronic circuit begins from 
the module named root. In this case, keyword module is not necessary. Everything said about modules is true 
for the root module, with certain modifications and additions. The root module must not have formal 
signals and/or action parameters, since due to its position on the top of the tree it cannot receive any. In the same 
fashion, it cannot return under its name any link. Finally, the root module has three additional constructs 
defining the conditions of the simulation and printing its results: 

• plot - for printing out the results; 

• timing - for timing control; 

• options - for defining simulation conditions (e.g. tolerances). 

Note: Commands plot, timing and options are placed between structural and functional part of the 
root module. In this space, these three commands can be given in any order. 
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Note: In the root module, functional part can be omitted, but the structural part must be described. 
Command timing cannot be omitted. Command plot can be omitted (but it does not make to much sense to 
simulate without printing out results). Command options can be omitted. 

5.6.1. Print control -- command plot 

Alecsis does not have waveform display capabilities that can be used to view the results of simulation. For 
that, separate program Agnu is used. Alecsis creates an output file, with the results of the simulation in numerical 
form. There is not much sense in saving states of all digital signals and values of all analogue variables in the 
circuit, because that would make the output file too big to handle. Only signals and variables specified by the user 
are saved. For that, the command plot is used. Alecsis creates the output file during the simulation. If the 
simulation is terminated for any reason before the final time-instant is reached, all time-instants solved until that 
moment are saved. The output file carries the same name as the input file, with the extension .ar (Alecsis results). 
(Input file has extension .ac.) 

printing: 
  plot  { content_of_printing }  <;> 
 
content_of_printing: 
  element_of_printing 
  content_of_printing  element_of_printing 
 
element_of_printing: 
  caption constant_string ; 
  link_type <type> <direction> link_list; 
  sweep  <type> link; 
 
link_list: 
  link 
  link_list , link 
 
link: 
  static_link < ( element ) > 
  absolute_path /static_link <element> 
  identifier body_function 
 
absolute_path: 
  element_name 
  absolute_path  /  element_name 

Note: Keyword plot can be replaced with out, for compatibility with earlier versions of Alecis. 

The links are specified with their link types. The link type comes from the set of legal types (node, 
signal, etc.). The link data type (double, int, etc. or some composite type) is not necessary for link local to 
the root module, but if you want the value of link situated somewhere else on the hierarchical tree, which is a 
vector, structure, or a digital signal, the link data type is necessary. 

For link that is not local to the root module, the absolute path is given as the part of its name. The path 
is composed similarly to the path in UNIX operating system. The absolute path is the path from the root 
module to the internal link via names of the components making the path (i.e link X in submodule Y is given as 
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Y/X). The link itself can be an identifier, identifier with index (for arrays), or reference to a member of structure, 
by rules of static links. If the name is a composite link, the printout will consist of all its elements. 

 As said above, link data type has to be given for vectors, structures or 
signals that are not declared in the root module. If vector of nodes U of 
length N is declared in submodule Y, command: 

  plot { node Y/U; } 
 results in printing only the first vector position U[0], instead of the 

whole composite link, i.e. all N positions. The compiler does not see the 
declaration of vector U, which is lost after parsing the module Y. For 
that reason, U is treated as the scalar node, not as the vector. The problem 
can be solved if a vector type is defined on the global level, before the 
root module: 

  typedef double tmpvec[N]; 
 and printing is performed using: 
  plot { node tmpvec Y/U; } 
 In this way, link data type is given explicitly, and the compiler knows 

that U is a vector. 

The title to be passed to the program for graphical presentation can be controlled using keyword caption. 
If caption is omitted, the name of the root module is used as the title. 

The variable on the x-axis is by default the time in seconds. However, any circuit variable can be set on the 
x-axis using keyword sweep. 

 
Figure 5.2: Problem of link with the hybrid aspect is solved by inserting converters 

A link can have hybrid aspect if it is connected both to analogue and digital components. The case depicted 
in Figure 5.2 is a general one, since link is connected to analogue components (no matter how many of them) to M 
outputs of logic gates, and to N inputs of logic gates. In this case, Alecsis automatically generates M D/A converters 
and N A/D converters, as shown in Fig. 5.2. That means, converters are generated for every digital circuit, which is 
connected to an analogue link via input or output. 



64 Alecsis 2.3 - User’s manual 

Such a link has an analogue aspect (unique analogue value), as N digital aspects, viewed from N A/D 
converters, and M digital aspects, or viewed from M D/A converters. We can print out all the aspects of such link. 
Analogue aspect is obtained by specifying the analogue link type (node, flow, etc). By specifying the direction 
indicator as in, and the link type signal, we get N solutions from the inputs of A/D converters, that is if the 
indicator is out - M solutions from the inputs of D/A converters. 

struct S { three_t send, recv; }; 
root module test () { 
   vgen vg; 
   signal three_t v1, v2[4], v3[3:0]="0010"; 
   node n1, n2, n3, n4; 
   module X x; 
   signal S s1, s2; 
   ... 
   plot { 
     caption "results of simulation of root module test"; 
     node n1, n2; //drawn in the same group - common scaling 
     node n3; node n4; // drawn separately 
     signal v1, v2[2], v3; //signals are always drawn separately 
     current vg;           // current trough the voltage source vg 
     signal three_t x/y/z/data; 
     signal three_t in v1;   // all values           - A/D 
     signal three_t out v1(e1), v2;  // all drivers  - D/A 
     signal S s1, s2.send; 
   } 
} 

Nodes n1 and n2 will be shown in the same group, which means they use the same scaling for y-axis. 
Nodes n3 and n4 are stated separately, and will be shown on separated waveforms. Signals v1, v2, v3 are also 
given separately, one beneath the other, which is always the case with digital signals. The whole of the signal v3 
will be shown (from v[0] to v[3]). Since vg is a voltage source, compiler has generated the current of the same 
name flowing through the source (as in SPICE), which can be accessed using the keyword current. The next 
line defines the printing of the signal named data, which is reached using the listed path, as it is not on the root 
hierarchy level. In this case compiler accept the given link data type of the signal data, as the information about 
the real type is lost after parsing module z, where this signal is local (when preparing the data for simulation, 
simulator checks whether the signal data really exists). Supposing that some analogue components are connected 
to v1 and v2, the following line enables us to get all results of A/D conversion for v1. After that the results of 
D/A conversion for v2 are demanded, as well as the results of D/A conversion for v1, but only for the component 
e1. The last line defines the printing of all members of signal-structure s1, and member send of signal-structure 
s2. 

In some cases, we do not need a value of the link as the simulation results, but the result of some 
computation with that values (e.g. difference of two node voltages, their ratio, etc.). In this case, instead of the link 
name, the body of some function that performs the computing is given, and the result is returned using command 
return. 

plot { 
       node double power { return (n1-n2)*vg; }; 
    } 

In this way, the result named power, calculated as the difference of node voltages n1 and n2 multiplied by 
the current vg, is given in the output file. One of the two type declarations - of the link type (node) and the data 
type (double) - can be omitted, but not both of them. The declared data type must agree with returned type. 

Note: It is more consistent to use only data type declaration (double), as power is a new variable, not a 
new link.  
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In the above example, computation is simple, but the user can implement more complex function bodies. The 
example can be rewritten as: 

plot { 
       node double power { double node1, node2, node_diff; 
                           node1 = n1;  node2 = n2; 
                           node_diff = node1-node2; 
                           return node_diff*vg; }; 
    } 

The problem arises with the links that are not on the root hierarchy level, i.e. that are not local to the root 
module. The symbol '/' used to define the path through the hierarchy is used for division in expressions, and 
would be understood as such in function body. Therefore, computation can be performed only with values of links 
local to the root module. That means, all links to be used in computation are to be declared in the root 
module, and than passed to submodules when they are invoked. The another way around is to have that links 
declared only in submodules, but to return their current value using action parameter. As already said in section 
on action block, parameters of the action block can be used bidirectionally, i.e. they are passed by 
reference, unlike parameters of C functions; and they can be accessed using indirection operator, i.e. name of 
the component behaves as a pointer to the structure that comprise its action parameters. 

module Y (...) { 
   node n1; 
   action (double p1=0;) { 
   ... 
   process per_moment { 
       p1=n1; 
   } 
} 
 
root module X { 
   Y y; 
   y(...); 
   ... 
   plot { double n1_value { return y->p1; } 
} 

5.6.2. Timing control 

timing: 
  timing  {  time_control  }  <;> 
 
time_control: 
  setting  
  time_control setting 
 
setting: 
  parameter = timing_rhs ; 
 
timing_rhs: 
  constant_expression 
  parameter = timing_rhs 
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This construct controls time parameters of a simulation. Simulator recognizes the following parameters. 

Table 5.1. Parameters for simulation time control. 

Name Default value Meaning 

tstop / duration of the simulation (in seconds) 

a_step / starting time step of analogue simulation 
(in seconds) 

a_stepmin a_step/100 minimal allowed time step of analogue 
simulation (sec) 

a_stepmax min(a_step*100, tstop/100) maximal allowed time step of analogue 
simulation (in seconds) 

tprint 0 printing step (in seconds) 

For example:  

timing { 
    tstop=10ms; 
    a_step=0.1ns; 
    a_stepmax=0.1ms; 
} 

Of all these option only tstop applies to digital simulation. Digital simulator advances using the next-
event technique. It performs the simulation only when an event happens The result of that simulation are new 
events, scheduled to happen in some future time. After that, the simulation time advances to the time of the next 
scheduled event. For that reason, time step does not exist for digital simulation - it jumps from one event to another. 
The results are printed for every event in output file, so the tprint parameter does not have effect, too. Digital 
simulator performs the simulation for all events scheduled before tstop. If there is no event scheduled exactly at 
time t=tstop, the simulator repeats the printout of the last state for the time t=tstop in order to complete the 
waveforms for the graphical presentation. 

For analogue simulation, parameter a_step is obligatory, too. This value is used just to begin the 
simulation, since simulator alters the time step during the simulation, according to the dynamics in the circuit. Time 
step is chosen to have the maximal allowed value (to save CPU time), so that the accuracy of time-domain 
simulation is within limits determined by the tolerances abs_LTE and rel_LTE (see the following section). 

The time step is kept in limits (a_stepmin, a_stepmax). Parameter a_stepmax is used to avoid to 
big time steps that makes waveforms, although accurate, to look discontinuous. The default value is hundred times 
bigger than the given a_step, but a_stepmax cannot be bigger than t_step/100. Parameter 
a_stepmin enables us to avoid too small time steps. Time step appears as denominator in reactive component 
models, and to small value can create numerical problems. Besides, if the time step is too small, the simulation can 
last very long, and the reason might be unimportant - for instance, rapid change of voltage on some parasitic 
capacitances. For that reason, it is useful to limit the smallest value of time step. However, if the simulator reaches 
value a_stepmin, the simulation error is not within given tolerances. The simulator issues warning message 
suggesting decreasing value of a_stepmin or increasing tolerances for numerical integration abs_LTE and 
rel_LTE (or, in case the circuit contains ideal switches, tollerances SC_vtol, SL_itol, or SDDT_tol). 
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Value of parameter t_print gives the minimal time difference of results printed in output file. It is very 
useful to limit the number of printed points on waveforms, since to big number of points results in very large output 
files, and often does not contribute to the readability of results. Default value is 0, when all computed time points 
are printed out. 

5.6.3. Simulation options 

Options control only the analogue aspect of the simulation. Here, many parameters that control the 
simulation run can be set. Clearly, this command is optional, as all these parameters have default values. We can 
divide this set of parameters in four groups: 

� control of numerical integration; 

� control of iterative process; 

� control of sparse matrix solving; 

� control of component models; 

5.6.3.1. Control of simulation time (numerical integration) 

Table 5.2. Control of numerical integration. 

Name Default value Meaning 

method Gear2 (2) The method of numerical integration: can be None 
(0), EulerBackward (1), or Gear2 (2). 

abs_LTE 1.0e-12 Absolute tolerance of local truncation error (LTE) 

rel_LTE 0.001 Relative tolerance of local truncation error. 

SC_vtol 1mV Accuracy of voltages of switched capacitors. 

SL_itol 1uA Accuracy of currents of switched inductors. 

SDDT_tol 1000 Accuracy of quantities that are numerically 
integrated using eqn command if switches exist in 

circuit. 

An example of statement options is: 

options { 
method = EulerBackward; 
abs_LTE = 1.0e-11; 
SDDT_tol = SC_vtol = 0.01; 

} 
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Note: Values of parameter method - None, EulerBackward and Gear2 are actually integer values, 
defined in standard Alecsis header file alec.h. In that file, it is defined: 

#define None   0 
#define EulerBackward 1 
#define Gear2   2 
Therefore, to use textual values of parameter method, you should have file alec.h file included before 

your root module definition, using command: 
# include <alec.h>. 

Parameter method represents the choice of numerical integration formula, used for reactive models (e.g. 
capacitor, inductor, etc.) The simplest formula is Euler-backward formula (or Gear 1 formula), where time 
derivative in the time instant tn+1 (time instant to be solved) is: 
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where xn+1 is the integrated quantity in new, (n+1)st time instant, and xn is already solved quantity value from nth 
time instant. hn equals time step tn+1-tn.  

Gear2 formula is the most popular formula for electronic circuit simulation, and is default value of parameter 
method. This is a two step formula: 
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where solutions from two previous time instants, as well as two last time steps are used. 

If parameter method equals None, numerical integration is not performed. That means that capacitors are 
treated as open circuits, and inductors as short circuits. This option is usually useful in testing circuits, to see how 
the circuit behave with same input, but without (parasitic) reactive elements. 

Note: If method equals None, numerical integration is not performed, and the time step remains constant 
throughout the simulation, with the user defined value a_step. 

If you need to have constant time step, with reactive elements taken into account, you should state in timing 
command: 

a_step = a_stepmin = a_stepmax = ...; 

Parameters abs_LTE and rel_LTE are absolute and relative tolerance of numerical integration. LTE is 
the local truncation error, i.e. error in one time step. For Euler-backward formula, local truncation error can be 
estimated as: 
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where h is current time step, and the current value of the second derivative is numerically estimated. For Gear2 
formula, LTE is estimated as: 
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The tolerance ε is calculated as: 
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where expression abs_LTErel_LTE + 
dt
dx

takes into account both relative and absolute tolerance of local 

truncation error. Time derivative is numerically estimated. Expression 
h

xrel_LTE 
 is the correction that takes 

into account numerical error in iterative process (it increases ε for small time steps h, otherwise error in computing 
can lead to further decreasing of h). Value of εT is the correction factor, which is set to 10. 

Error δ is compared to ε for every reactive element (x is capacitor voltage, inductor current, or value whose 
derivative is calculated in eqn command). If δ > ε for at least one reactive element, the solution is discarded. 
(n+1)st time instant is calculated again, with shorter time step. We shorten the time step to set δ to be nearly equal 
to ε, which gives maximal time step, and the error is still within tolerances. For Euler backward formula, when 
calculation using eqn. (3) is used, this gives new time step as: 
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For that calculation, x with highest error δ is used. h* is the discarded time step, which means, that the time 
step cannot be shortened more than 10 times. For Gear2 integration method, usage of eqn. (4) gives: 
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If δ < ε for all reactive elements, error is smaller than the tolerance, and the solution in the current, (n+1)st 
time instant is accepted. Counter n is increased, and next time step is increased. For Euler backward method, this 
new time step is calculated using again (critical) quantity x with highest error δ as: 
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and for Gear2 method using: 
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which means that the new time step cannot be more than two times longer than the previous. 
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Parameters SC_vtol, SL_itol and SDDT_tol are used for circuits with ideal switches. Alecsis 
posses a built-in model of ideal switch, which is unique for this simulator. It has zero resistance for closed switch 
and infinite resistance for open switch, and every topology of circuit is allowed. Circuits can be nonlinear, too. 

For circuits with capacitors and switches, circuit should be simulated exactly at the time instant of switch 
transition, but before the transition occurs, to set the capacitors' voltages to correct values. After switch transition, 
the circuit has new topology, but the capacitors "remember" the voltages before switching . If some internal circuit 
voltage controls the switches, the time of switching is not known in advance, as that internal circuit voltage is obtain 
as the result of simulation, too. The time instant of switching is found by an iterative process. Of course, the exact 
time instant of switching cannot be found, so we have to introduce some tolerance. As the accuracy of capacitor 
voltage is in question, we have introduced SC_vtol as maximal allowed difference of capacitor voltage in two 
last solved time instants before the switching occurs. If all capacitors have the change of voltage below SC_vtol, 
we consider that we have the capacitors' voltages correct enough, i.e. we have found the switching instant correctly 
enough. If at least one capacitor voltage have faster change rate, solution after switch transition is discarded, time 
step is reduced 5 times, and the simulator searches again for the switching instant. Parameter SC_vtol has no 
effect if the circuit does not have inductors or ideal switches. 

Parameter SL_itol is used following the same philosophy, but for the accuracy of inductor current in the 
moment of switching. It has no effect if the circuit does not contain both inductors and ideal switches. 

Parameter SDDT_tol is used to maintain the accuracy of the quantity that is differentiated in the eqn 
command, if the circuit contain ideal switches. Since eqn command is used for user-defined models, the simulator 
does not have a clue about the order of magnitude of that quantity. Therefore, default value of parameter 
SDDT_tol cannot be set to some usually needed value. (For built-in components, like capacitor or inductors, 
order of magnitude of electrical quantities is known, so the default values can be set.) SDDT_tol has default 
value of 1000, which is usually too high to have any effect. It should be set by the user, according to the actual 
application of the model. 

5.6.3.2. Control of convergence (iterative process) 

Table 5.3. Control of iterative process. 

Name Default 
value 

Meaning 

vtol 1µV Absolute tolerance for node voltage. 

itol 1nA Absolute tolerance of branch current. 

qtol 1.e-20 C Absolute tolerance of (capacitor) charge. 

reltol 0.001 Relative tolerance for all variables in the system of equations. 

maxiter 10 Maximal number of iterations in one time instant. 

dump 0 If different from 0, iterations are dumped. 

k 10 Goes with dump. Iteration dumping factor. 
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dcon 0 If set to 1 helps the convergence in the first time instant (t=0) 
by adding (temporary) conductance between every circuit node 

and ground. If set to 2, helps the convergence during whole 
transient simulation. 

max_weight 1.e-4 Goes with dcon. Maximal conductance added to the main 
diagonal. 

min_weight 1.e-12 Goes with dcon. Minimal conductance added to the main 
diagonal. 

p 6 Goes with dcon. Parameter for calculating conductance in the 
next iteration. Higher value of p means that conductance value 

decreases faster. 

q 0.5 Goes with dcon. Parameter for calculating conductance in the 
next iteration. Higher value of q means higher influence of 

current iteration number m, i.e. slower decrease of admittance 
value. 

maxdcon 10 Goes with dcon. The maximal number of cycles. 

An example is: 

options { 
  itol = 1.e-12; maxiter = 20; dcon = 2;  
} 

The first group of parameters for convergence control consists of tolerances. Alecsis checks both relative and 
absolute tolerances, using expression: 

tolxxx mmm +<−+ reltol1  (5.10) 

where m is iteration number, xm and xm+1 are quantity values obtained in two last solved iterations, reltol is the 
relative tolerance (same for all quantities) and tol is the absolute tolerance. From expression (10) one can conclude 
that for small values of xm, absolute tolerance is checked, and for big values of xm, relative tolerance is checked. For 
node voltages, parameter tol equals vtol, for branch currents it is itol, and for charges it is qtol. For links 
declared as flows, tol=0, as the simulator cannot estimate order of magnitude of non-electrical quantity. That means 
that only relative tolerance is checked for flows. 

For every link, user can define its own absolute tolerance during its declaration: 

node [0.001] v1, v2; 
flow [1.e-5] pressure; 

For v1 and v2, tol would be equal 0.001, while for other nodes in the circuit, vtol would be used. For 
pressure, absolute tolerance would be 1.e-5. It is very useful to set absolute tolerances for all flows during their 
declaration, as relative tolerance check is not reliable for small values of xm. 

If (10) is satisfied for all links in the system, convergence is reached, and simulation can proceed to the next 
time step (n is increased, m is reset to 0). If (10) is not satisfied for at least one link, analysis is repeated for the next 
iteration. Counter m is increased, and nonlinear models are updated (calculated for new iteration). 
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Parameter maxiter limits the number of iteration per one time instant. It should not be a very big number. 
If simulator needs big number of iterations, it is very probable that the time step was too big, and the simulation 
result would be discarded because of local truncation error. Therefore, it makes sense to give up before reaching the 
convergence, and to shorten the time step. In such case, the time step is shortened 4 times in Alecsis. 

If |xm+1|>1030 or |xm+1-xm|>1030, Alecsis consider that there is an overflow, and the condition (10) is not 
checked at all. The simulator considers that also as no convergence case, and shortens the time step 4 times. 

Alecsis posses two additional mechanisms to help the convergence. They are iteration dumping and node 
"grounding". 

The user introduces iteration dumping by setting the option dump. When the dumping is introduced, starting 
point for the (m+1)st iteration is calculated as: 
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where f(x) is the dumping function, chosen so that |f(x)|<|x|. When no dumping is introduced, f(x)=x, which means 
that the starting point for (m+1)th iteration is vm+1 (solution from mth iteration). Dumping adds only part of the 
increment to vm. In Alecsis, dumping function is implemented as: 
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This gives stronger dumping for bigger increments x. Eqn. (11) is applied on every vector member. Parameter k can 
be set by the user, and should be in the range (1,20). 

Iteration dumping is useful if models in the system express strong nonlinearity (e.g. exponential), but it can 
slow convergence in other cases. 

Another method of solving convergence process is node grounding. If grounding is used, conductances are 
connected from every node to the ground, and across PN junctions in the circuit. With high conductances, there is 
no doubt that the iterative process would converge easily. However, such solution is not correct, as this is not the 
original circuit. That is only an intermediate solution, which can be used as the starting point for solving the new 
circuit, where conductances are lower. In this way, conductances are decreased until their value is negligible, so we 
get the solution of the original circuit. 

This option is activated if convergence is not obtained in maxiter iterations. Conductances are set to 
w=max_weight. If the solution converge, conductances are decreased in the following manner: 
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Conductances are multiplied by factor smaller than 1. Parameters p and q can be changed by the user. With 
higher value of p conductances decrease faster, while q makes bigger influence of the number of iterations m. If m 
is higher, conductance decrease more slowly. Paramater s is firstly set to 0. After every successful convergence, 
eqn. (13) is applied again, until conductances reach value min_weight, when they are considered negligible. 

If convergence is not reached for some value w, conductances are set to their previous value, s is increased 
by 1, and eqn. (13) is applied again. With higher s, conductances decrease slower. As this process can last very 
long, s is limited to 10, and number of successful application of eqn (13) to maxdump (if convergence is not 
reached, that trial is not counted). 

Mechanism of node grounding shows to be very efficient and is able to help in solving most of the 
problematic circuits. If dcon is set to 2, this mechanism is applied whenever number of iterations m reaches 
maxiter. However, you should be aware that node grounding slows down the simulation considerably. Time step 
shortening, which is normally performed by Alecsis when m reaches value maxiter is usually faster.  
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If dcon is set to 1, node grounding is applied for the initial time instant (t=0) only. For this time instant, 
convergence probems are likely to occur, as a "good guess" from the previous time point solution is not available. 
There are other ways to help the simulator to find the initial solution. If you set: 

node n1=6; n3=4; 

when you are declaring these nodes. In this way, starting values for the iterative process in t=0 are set. (If you 
declare these nodes using: 

node n1<-6; n3<-4; 

you can set solution for the initial time instant, i.e. circuit is not solved for t=0 at all - user solution is accepted.) 

One can monitor conductance values using verbose level 8. If Alecsis is invoked using: 

alec -v8 circuit_name.ac 

Alecsis prints out information on trial number, applied conductance value, and parameter s value. This can be useful 
information for adapting values of parameters. 

Note: Conductances are applied only on nodes and on PN junctions in the current version of Alecsis. If you 
have nonelectrical system, and unknown quantities are declared as flows, option dcon cannot help. 

Note: If some convergence problem occurs, options dump and dcon should not be used readily. The 
reason for convergence problem is very often some error in the circuit or in models. Therefore, you should 
firstly check your description. 

5.6.3.3. Control of system of equations solver 

Table 5.4. Control of sparse matrix solver. 

Name Default value Meaning 

renum Best (2) Quality of sparse matrix renumeration algorithm. It 
can be None (0), Fast (1), or Best (2). 

There is only one option that controls sparse matrix solver, and that is renum. It can change the CPU time 
necessary for simulation. The number of nonzero elements in the system matrix generated during LU decomposition 
depends on the ordering of matrix rows and columns. This reordering is performed only once, at the beginning of 
simulation. 

If you chose option Best, a variant of Berry's algorithm is used, when very detailed (and slow) reordering 
is performed. This is the default value, as reordering is performed only once, and good reordering guaranties fast 
simulation. With option Fast, a variant of Markowitz's algorithm is used, when reordering is performed 
much faster, with somewhat slower simulation in time domain afterwards. This option should be chosen 
for very large matrices (several hundreds of equations or more), since with Berry's algorithm, reordering 
can take more CPU time than time-domain simulation. When option None is chose, no reordering is 
performed. This is implemented for comparison only, it has no practical effect, since simulation can take 
too much time. 

Note: Values of parameter renum - None, Fast and Best are actually integer values, defined in 
standard Alecsis header file alec.h. In that file, it is defined: 

#define None  0 
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#define Fast  1 
#define Best  2 
Therefore, to use textual values of parameter renum, you should have file alec.h file included before 

your root module definition, using command: 
# include <alec.h>. 

5.6.3.4. Control of models 

Table 5.5. Control of component models. 

Name Default value Meaning 

charge_model 0 Applicable to built-in BSIM model of MOS 
transistor only. It can be 0 or 1. 

temp 300.0 Ambient temperature. 

Example: 

options { temp = 400; } 

Option charge_model is applicable to BSIM model of MOS transistor that is built in Alecsis. a 
nonlinear capacitance can be modelled correctly only over charges. If this is not performed, problem known as 
charge non-conserving can appear. In this way, new unknowns (charges) are added to the system of equation. 
Nevertheless, charges can be mathematically eliminated from the system of equations, when the model is still 
correct but the system of equation is smaller. 

If charge_model=0, charges related to every terminal of MOS transistor are not appearing in the 
system of equations. As there are four such charges associated to every MOS transistor, size of the system of 
equations can be much smaller. If charge_model=1, system of equation is bigger, but accuracy of simulation 
is better controlled, as the convergence is checked also for charges, using parameter qtol. 

Option temp sets the value of ambient temperature. It is passed to all built-in models in the system, where 
model parameters are recalculated for given temperature (as in SPICE). Temperature is given in Kelvin degrees. 
Besides, value of this option can be used in user defined models. If keyword temp appear in some expression in 
the code, it represents the temperature value set using command option. 

 In the current version of Alecsis, option temp does not work for built-in 
(SPICE-like) models. As temperature dependence is already programmed 
in built-in models, we would probably improve that very soon. 

 For user-defined models, option temp works correctly, i.e. keyword 
temp used in model code returns correct temperature. 
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5.7. Model cards 

Action parameters enable for every component to receive certain parameters that determine its behaviour in 
the circuit. If the number of parameters in not very big, this is an easy-to-use method. However, with the increase in 
the number of parameters it becomes tedious to write parameters for every component separately, especially when 
more components share the same parameter values. It is much more convenient group those parameters, give the 
group a name, and then associate that name when connecting the component. This is the concept of model cards. 
This concept is familiar from the simulator SPICE, and is improved in AleC++ to allow object-oriented modelling. 

AleC++ supports SPICE syntax of model cards for several analogue components - MOSFET, BJT, JFET, 
diode. This enables usage of available SPICE model cards in Alecsis. Keyword spice is used to switch on SPICE 
model card syntax. 

module inverter (output, input, vdd, vss) { 
   mosfet mup, mdown; 
 
   mup (output, input, vdd, vdd) { model = MNPMOS; l=2u; w=6u; } 
   mdown (output, input, vss, vss) { model = MNNMOS; l=w=2u; } 
} 
 
spice { // transition to SPICE syntax 
* SPICE syntax comments 
.MODEL MNPMOS PMOS ( LEVEL=1  
+ VTO = -0.92V GAMMA=0.9 LAMBDA=0.1 ) 
 
.MODEL MNNMOS NMOS ( LEVEL=1  
+ VTO = 0.87V GAMMA=0.67 LAMBDA=0.078 ) 
}  // back to AleC++ syntax 

Cards formed this way can be associated desired number of times when connecting components, by listing 
the model name after the special parameter model. The name of the model is an external symbol. Therefore, the 
model card itself can be given before or after referencing in the text, or can be stored in a library. As was the case 
with modules, when referencing the name of a model you can specify the library name to solve conflicts with 
double names. 

model = ttl_lib.short_nmos; 

5.7.1. Model cards as static objects 

SPICE syntax of model cards is used for built-in components. User-defined components must also have 
some way of grouping parameters into model cards. SPICE syntax of model cards is not convenient here, as user-
defined models can be very complex, can be even composed of submodels that have their own model cards. And 
there is no need to follow SPICE syntax - user-defined models are not necessarily electrical. 

AleC++ model cards are created using classes. C++ - like class is very convenient for this purpose. If the 
user wants to create a new type of model card for the new type of element (created by defining a module), he or she 
needs to do the following: 

¾ Supply the information about the names and types of all parameters that can appear 
in the model card.  

¾ Provide a mechanism that will allocate memory for the parameters (if they are 
pointers) and a mechanism to set parameters to default values. 
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¾ Provide a mechanism that will test the parameter values (if they are supposed to be in 
some range) before the simulation, and if necessary preprocess them before the 
simulation. 

¾ Provide a mechanism to free the memory of a parameter-pointer 

¾ Make parameters of a model card, associated with a module, visible in the functional 
part of the module. 

Most of these reminds us of classes, constructors, destructors, and the visibility rules. This makes C++ 
syntax of classes a natural choice for model card definition. 

Creating a new model card in AleC++ is the same as creating a class. Members of a class are parameters in 
the card. Constructor sets their initial values (default values of model card parameters), and destructor frees the 
memory. As in C++, constuctor has the same name as the class, and the descrutor the same name with prefix '~'. 
The only difference from C++ -like class is the new special function -preprocessor. Preprocessor is necessary, since 
testing of the parameter value range and the preprocessing cannot be performed in the constructor. Constructor is 
activated when the component is declared, and it gives default parameter values. Preprocessor has to be activated 
when the specific model card is used for the given component, and that is performed in SPICE-like style, when 
connecting the component. This new method has the same name as the class, but with the prefix '>'. Preprocessor 
does not return any result, and it does not accept any parameter. 

We use the specific model card, i.e. set of parameter values, by invoking that model card when connecting 
components. However, we have to associate the component model with the given model card type before, when 
defining the component model. This is necessary to make the parameters defined in the model card visible when 
defining the component model. Association of a model card and a new module is performed using the name of a 
class, and the operator of the access resolution '::'. 

class new_diode { 
        double is;              // parameter is 
        double eta;             // parameter eta 
    public: 
        new_diode();    // constructor - cannot be inline 
        ~new_diode();   // destructor - not necessary 
        >new_diode();   // processor 
        double evaluate_current(vd);            // diode current 
}; 
 
module new_diode::ndio (plus, minus) { 
    ... 
    action { 
        process per_moment { 
            double current; 
            current = this.evaluate_current(plus-minus); 
            ... 
        } 
    } 
} 

This example illustrates a few important characteristics: 

− Special methods of a model class (constructor, preprocessor, destructor) cannot be inline because they are 
called by the simulator itself. 

− It is recommended for the parameters to be private. More than one component can associate the same model 
card, so if more of them change the parameter values, an error can be created that is very difficult to debug. 

− Note the difference in access rights between the methods of one class and modules that are associated to the 
class. Both module and models can access parameters either directly, or using the keyword this, since they 
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have the same visibility area. However, only methods have the right of access to all members of class; 
module ndio from the example cannot access private or protected members. Therefore, all 
calculations (model equations) should be defined as public, so they can be accessed from the process 
code (as evaluate_current in the example above). Modules should use these methods, not the 
parameters directly. Note that all other methods, except special, can be inline (recommended for smaller 
functions). 

Some users can find these limitations too restrictive. Restrictions are here to make the probability of an error 
smaller, and to narrow the space where you should search for an error. Nevertheless, you can declare a module as 
a friend of a model class. Such module has the right of access to all members. 

class new_diode { 
        ... 
        friend module ndio; 
}; 

If a module is to be associated to a model card, that has to be added to the module declaration. If a parent 
module accepts the same model card as the given module, the model card can be omitted during the declaration. In 
such case, the module uses the model card from the parent module. In this way the card can be passed down the 
model hierarchy, which can very useful for complex models. 

5.7.2. Syntax of model card 

Model cards are defined on the global level and are subject to external linking. The syntax of the definition is 

model_card: 
 model class_name :: card_name <(<arguments_for_constructor>)> {<card_body>} 
     
card_body: 
  parameter_setting 
  card_body  parameter_setting 
 
parameter_setting: 
  model_lhs = model_rhs ; 
 
model_lhs: 
  <class_name::>parameter_name 
 
model_lhs  . structure_member 
  model_lhs [ constant_expression ] 
 
model_rhs: 
  initializing_pahrase 
  model_lhs = model_rhs 

We have explained how the model card type is defined. We have to explain how the particular instances of 
the model card (sets of parameter values) are given. The keyword model is used, followed by the association of 
the model card class and the particular model card name using the operator of resolution '::. (see the example 
below). If the constructor with arguments is used, the list of arguments in parentheses follows that association. 

The body of a model card is in parentheses ('{' and '}'). The card consists of series of commands of 
assignment, which set the initial values of parameters. The same set of rules applies for initialization of parameters 
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as was the case with the initialization of static objects (it is possible to do an aggregate initialization of composites 
and structures). You can initialize more parameters using the same command (e.g., a=b=c=2;). You can also 
initialize only a part of a vector or a structure. If a model card is derived (i.e. class is derived), that is inherits one or 
more base ones, and if some parameters share the same name, you can explicitly give the name of a class and 
operator and the access resolution operator '::' to clear which parameters is to be used. If some parameters are not 
assigned a value in the model card, they keep their default values given in the constructor. The whole model card 
can be empty, when all parameters keep their default values. 

struct S { double a, b; }; 
 
class X { 
        int a; 
        double b; 
        char *s, v[20]; 
        S s1, s2; 
        double m1[2][2], m2[2][2], m3[2][2]; 
    public: 
        X (int); 
        ~X (); 
        >X (); 
}; 
 
model X::x (2) {          // definition of model card x of type X 
    a = 2; b = 5.6; s="string1"; v="string2";        
    X::s1 = { 2.2, 3.5 }; 
    s2.a =4.7;     s2.b = 6.8; 
    m1={ {1,2}, {3,4} };  //automatically converted to type double 
    m2[0] = {1,1}; m2[1] = {0, 3};   
    m3[0][0]= m3[0][1] = m3[1][0] = m3[1][1] = 5.6; 
} 
 
module X::M () {            // module M uses model card type X 
    module X::Y y1, y2, y3; // module Y uses model card type X 
    module Z z; 
    module K::MK k1, k2;    // module MK uses model card type K 
 
    y1() model = x;    // O.K. - association of model x 
    y2();              // O.K. - card inherited from a parent (M) 
    z() model = x;     // ERROR - Z does not accept model cards 
    k1() model = x;    // ERROR - MK accepts class K, not X 
    k2();   // ERROR - parent takes class X, k2 expects class K 
    y3() private model = x;   // copy, not a reference of model x 
} 

Association of a model card is passing by reference - address of the model card is accessed. That means that 
no copy of the model card is created when it is associated during connection of some component. Model cards are 
normally only read during the simulation, parameter values are not changed. By creating copies, we would spend 
memory without any need. However, someone can create class methods that change the values of parameters during 
the simulation run, which can cause problems with other components referencing it. In that case, it is better to make 
a copy and not reference using the keyword private before the word model (see connection of component y3 
in the example above). A copy of the model card x would be created, and constructor and preprocessor will be 
applied. Whenever the keyword private is used, a copy of the card is created. The rest of the components will 
have the reference to the original one. Compiler makes a shallow copy, but can do the deep copy if you define the 
copy constructor - X(X&). By creating private copy of the model card, we are sure that changes in a private card 
do not affect other components. The price for this is higher usage of memory.  
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Note: In this context, keyword private is related to creation of private copies, and is not related to the 
rights of access to parameters - public, private and protected parameters keep their access attributes 
unchanged. 

5.8. Modules with variable structure -- clone and allocate 

Modules with variable structure (application of commands clone and allocate), are explained in the 
Chapter on analogue simulation. It applies without any difference to digital and hybrid simulation, too. 

5.9. Visibility area (name masking) 

Modules create a separate visibility area. Priority rules (masking of the entities with the same name) are the 
following, starting from the lowest priority level: 

♦ global objects -- the lowest priority (the widest visibility area); 

♦ parameters and methods from model class, if a module accepts a model card; 

♦ formal links, if any; 

♦ local links; components connected in the structural area of the module; 

♦ action parameters, if any; 

♦ local variables in the action block; 

♦ local variables in processes, if any; 

♦ local variables in every new block opened inside a process. 

The priority increases from top to bottom of the list given above, while the appropriate visibility area 
decreases. Every declared entity can mask an entity of the same name, which was declared in the lower priority 
level.  

Note: Compiling with option -O (using optimizer) gives warning whenever masking occurs. 

Masking is not a redefinition, since redefinition means for two symbols of the same name to appear in the 
same visibility area. Redefinition is treated as error.  


