
Appendix 1
Alecsis installation and use

A1.1. Alecsis installation

Alecsis is program for UNIX operating system. Up to now, it was installed on following workstations:

• IBM RISC (AIX operating system),

• HP 9000s300/400 (HPUX operating system),

• HP9000s700/800 (HPUX operating system),

• Silicon Graphics (IRIX operating system),

• SUN Sparc (SUNOS operating system).

Installation is performed also for IBM PC (LINUX operating system) but is still considered shaky.

It is delivered on a single floppy disk, as a single file alecsis.tar.Z. File is compressed using UNIX
compress command, and archived using UNIX tar command. When the archive is opened, directory
alecsis is created, with following subdirectories:

� src2.3 - source code;

� include - standard header files;

� sys - standard libraries (in AleC++ code);

� lib - standard libraries (compiled into Alecsis object code);

154

Appendix 1. Alecsis installation and usage 155

� bin - executables;

� agnu1.1 - waveform display program (explained in separate Appendix);

� alm - Alecsis Library Manager (explained in separate Appendix);

� nrl - programs for postprocessing of digital simulation results (explained in separate
Appendix);

� p2a - PSpice2Alecsis converter (explained in separate Appendix).

A1.1.1. Paths for UNIX shell

It is necessary to make Alecsis executable, Alecsis include files and Alecsis libraries visible from your
working directory. The most convenient way is to define these paths in your UNIX shell. If you are using C-shell,
you can modify the .cshrc file in your home directory. This is to be done before compiling Alecsis source code,
as Alecsis Makefile uses some shell variables described here.

If Alecsis executable file alec is stored in directory alecsis/bin (which is default), you should add in
your .cshrc file the following line:

set path = ($path $HOME/alecsis/bin)

assuming that directory alecsis is unpacked below your home directory $HOME. If you have stored executable
file alec in some other directory, the appropriate path has to be defined.

It is also necessary to put command:

setenv ALEC_HOME $HOME/alecsis

in your .cshrc file. This makes standard header files located in $HOME/alecsis/include, and standard
libraries located in $HOME/alecsis/lib visible. Header files, containing declarations, should have extension
'.h' (like in C/C++). Header files, included using '<' and '>' as parentheses, would be searched for in directory
$HOME/alecsis/include, e.g.

include <alec.h>

List of directories where Alecsis search for included files can be expanded from the command line, using option '-
I', explained later in this Chapter. If the file name is included using quotation marks, e.g.:

include "header.h"

it will be searched for in current working directory.

Libraries contain definitions of modules and functions that are declared in header files. They are compiled
into Alecsis object code, and have file extension '.ao'. Libraries included using library command (explained
later in this Chapter) or '-l' command option (also explained later in this Chapter) are searched for in directory
$HOME/alecsis/lib. Users often define their own libraries, and it is often necessary to search some other
directories, too. These directories can be added using command option '-L' and shell variable ALEC_LIB_PATH.
For instance:

setenv ALEC_LIB_PATH .:./lib:

specifies that definitions are searched for in: current directory '.'; directory './lib'; and directory
'/usr/cad/alecsis/ttl'. Colon ':' is used as a separator. In this example, you can see that the library

156 Alecsis 2.3 - User’s manual

directory can be specified using relative or absolute path. You should at least specify current directory '.' using
ALEC_LIB_PATH. So, you have to put into your .cshrc file:

set path = ($path $HOME/alecsis/bin)
setenv ALEC_HOME $HOME/alecsis
setenv ALEC_LIB_PATH .

A1.1.2. Compiling Alecsis source code

To compile Alecsis source code, go to directory src2.3 and type make. The Makefile will give you
info about compilation on different hardware workstations. The Makefile can be modified for installations on
workstations that are not on the list given above, too. Different flags are explained in the Makefile. However,
we it can happen that some interventions in the source code are necessary for installation on different hardware
platforms.

There is one part of the Makefile that should be edited in any case. It regards paths to the C libraries,
location where executable files are stored, etc.

A1.1.3. Compiling Alecsis standard libraries

Alecsis standard libraries are given in directory alecsis/lib as compiled file -- Alecsis object code
binaries (extension '.ao'). They are also given in AleC++ source code in directory alecsis/sys (extension
'.ac' or '.hi'). AleC++ compiler works in the same manner on any workstation, but there might be some
differences in the way data are stored on different workstations. For that reason, after Alecsis installation, libraries
ought to be recompiled. Libraries are compiled using options '-c' and '-O':

alec -c -O file_name

Option '-c' means that files compiled (not interpreted), so that the file with object code is created. Option '-O' turns
the optimizer on. For instance, file alloc.hi is compiled using:

alec -c -O alloc

which creates library alloc.ao. Libraries (files with extension '.ao') must be then moved to alecsis/lib
directory.

The most important Alecsis standard libraries are explained in separate Appendix.

Note: For library management, special program alm (Alecsis Library Manager) is created. It is
explained in separate Appendix.

A1.2. Alecsis use

Many aspect of Alecsis usage are already explained in this Manual. We will give here overview of Alecsis
command line options, list of file name extensions, and some options for including precompiled libraies.

Appendix 1. Alecsis installation and usage 157

A1.2.1. Program call from the command line -- command options

The name of Alecsis executable file is alec. The program is invoked from UNIX command line by listing
the name (alec), one or more input files, and desired options. There can be more input files on the command lines,
but only one of them can be in the source (AleC++) code. Other must be object files, that are already compiled into
Alecsis object code (file extension '.ao').

Alecsis normally creates file with extension '.ar' (Alecsis results), that contain results of the simulation. If
it is invoked with '-c' option, it creates object files instead (extension '.ao'). That means, only compilation of
AleC++ code is executed, not the interpretation of the compiled code.

Object files are similar to Alecsis libraries (extension '.aa'), which also contain compiled Alecsis object
code. The only difference is in processing of their content. See Appendix on Alecsis Library Manager (alm) on
how to create and manage libraries. Libraries have a symbol table of contents at the beginning enabling fast
search. If the library is appended using option '-1', the desired entity from it (module, function, etc.) will be loaded
to memory only if referenced as a global signal (in the linking phase). However, object files listed as arguments on
the command line appear in full in the memory (not selectively). If the object file contains the main function
(C/C++ -like), Alecsis can execute it. That means Alecsis can interpret previously compiled files - no source code in
AleC++ (not compiled) is necessary. However, root module cannot be compiled and placed in libraries.

Alecsis 2.3 supports the following options (in alphabetical order):

-a listing of library content (no compilation or execution).

-c compilation of the original file (without execution). The compilation of file with name
name.ac (or name.hi) will produce a file named name.ao.

-cl multiple searching of libraries (cycle library). The order of libraries listed is not important
with this options since linker would search again in case of an undesired outcome.

-Dsymbol<=token> equivalent to the command in the code
"#define symbol <token>".

-E Alecsis executes the preprocessing phase only and prints the result in stdout.

-g appending of object library containing information for location of errors (in compiling),
and giving the information on names and number of lines of the user code with the fatal
error during the simulation, instead of the system announcement of type "bus error" or
"segmentation fault". If able, simulator will give the content of the working stack at the
time of fatal error (the order of function calls). Useful for debugging.

Note: Option '-g' helps in debugging AleC++ code used in processes. Errors that
appear as a result of inconsistent system of equations, for instance, cannot be debugged in
this way.

-i no development of inline function. All inline functions are compiled as non-inline and
static (this allows the existence of functions with the same name and the same
parametric profile in another library).

-Idir expansion of the list of directories where the library appended using include command
can be found.

-llib appending the library lib.ao to the linker list. During the resolution of unresolved
external symbols, linker will successively search the libraries for these symbols. You can
list desired number of libraries using this option more times. The order in the list is
important since linker does not return to an already-searched library (this is important if

158 Alecsis 2.3 - User’s manual

one external symbol refers to another unresolved external symbols). Option '-cl' (cyclic
search of libraries) solves this problem.
Option '-l' is equivalent to command library in the AleC++ code.

-Ldir expansion of the list of directories where the library can be found. This option is equivalent
to setting environment variable ALEC_LIB_PATH.

-o file.ao the result of compilation is placed in the file listed after the option. If the file contains
the function main, the command "alec file.ao" can execute it.

-O code optimization. Beside reducing the number of instructions, this instruction causes a
number of useful warnings of variable masking, absence of function prototypes, etc.

-over ban on operator overload.

-r no recursion. It is recommended for non-recursive functions because it gives faster code.

-S creation of an assembler file name.as from the given source file name.ac.

-stat printing of the separate output library (name.stat) containing data on the activity of
digital circuit part during the simulation (the number of events and the number of processes
in every moment).

-t printing of the duration in CPU seconds for particular phases of the program (compilation,
linking, preparation and execution of the simulation).

-vverbose_level Gives more information about the simulation run. There are following options:
-v1 tracks symbol table activity
-v2 tracks intermediate code generation (operand types etc.)
-v3 all LEX tokens are printed out as they arrive
-v4 follows voltage generator/inductor loops detection
-v5 prints instructions as they are flushed
-v6 tracks overloading and prototype mangling
-v7 prints list of nodes
-v8 follows the use of weights if option dcon is used
-v9 follows the process of static/global initialization
-v10 follows library management
-v11 follows function declaration
-v12 clear global symbol table before simulation
-v13 tracks function prototype existence
-v15 tracks class member access control
-v16 follows function inline expansion
-v31 prints system matrix and right-hand side vector in every iteration, as without reordering
-v32 prints system matrix and rhs vector in every iteration as reordered.
-v33 prints both non-reordered and reordered system matrix and rhs vector, respectively, in every

iteration
-v55 turns on full logic initialization
-v99 changes all calls to exit() with abort() to dump core file

Note: Verbose level 55 (full logic initialization) is rather a simulation option than a verbose level, and it will
be organized as such in following versions of Alecsis.

Most of these verbose levels are of interest only for us that created Alecsis, for our debugging purposes.
However, there are some of them that can be very useful for Alecsis users. For instance, verbose level 8 follows
use of weight when option dcon for difficult convergence problems is used. This can be very useful for setting
correct values for options max_weight, min_weight, p, q, and maxdcon, if you are not satisfied with
their default values (see Chapter 5, section on simulation options for details).

Appendix 1. Alecsis installation and usage 159

Verbose level 31 prints out system matrix, which can sometimes be helpful if you have problems with zero
pivot (singular matrix). This is, however, useful only for small matrices, as it is very difficult to analyze large
matrices.

Note: If more than one verbose_level is given, only the last one will take effect. For example:
alec -v1 -v2 file_name

has the same effect as:
alec -v2 file_name

A1.2.2. File name extensions

List of file name extensions is given in Chapter 2, but is given here again for completeness. The names of
Alecsis input files are arbitrary (the maximal name length is determined by the specific operating system,) but they
have to have the extension .ac. Extension .hi is also allowed for compatibility with version 1.0. File name
extensions are the following:

ac - Alecsis input file

hi - Alecsis 1.0 input file (accepted by newer versions, too)

h - Alecsis header file (as in C/C++)

ar - Alecsis results (Alecsis output file, Agnu input file)

ao - Alecsis object-code file (compiled input file)

as - Alecsis assembly language file (created by compiler using option -S)

aa - Alecsis library

stat - Alecsis statistics file (creted when command option -stat is used)

A1.2.3. Listing of libraries in the source file -- command library

Beside from the command line (option '-l'), you can list the appended libraries in the source file, as well.
The keyword used for that is library. You can list an unlimited number of libraries separated by a coma, ending
with semicolon:

library lib1, lib2, lib3, "lib4";

The command can appear many times in the text, while the result is a union of all separate lists. The
command can be anywhere in the text if on global level (outside functions, modules, etc.). The order of listing of
libraries is important unless you use the option '-cl'. You can use this command in conjunction with option '-1'.
Libraries are used in the linking phase, so command library should be used in the file where your main
function or the root module is.

The library name can be in quotation marks ("lib4" in example above) if the name of the library is
masked by some other name in the present context.

160 Alecsis 2.3 - User’s manual

A1.3. Overview of Alecsis versions

We use notation of Alecsis versions with tree numbers. First number denotes crucial change of
Alecsis/AleC++ functionality. The second one denotes change of functionality (new feature) from the user point of
view. The last number is denotes improvement (usually debugging) of existing functions.

Alecsis 1.x - input language based on C, no object-orientation.

Alecsis 2.1.1. - 2.1.50 - object-oriented input language AleC++ is introduced

Alecsis 2.2.1. - 2.2.33. - operator d2dt2 is introduced

Alecsis 2.3.1. - 2.3.x - through and across eqn statements are introduced

