
Appendix 10
PSpice to Alecsis converter

A10.1. Why PSpice2Alecsis conversion?

PSpice is an integrated mixed-mode (hybrid) simulator of the electronic circuit. Therefore,
it can be used for analogue, digital and hybrid circuits. The input language of the PSpice
simulation is based on the input language of SPICE simulator complemented by the mechanisms
for digital circuit description.

PSpice2Alecsis is a program that converts PSpice description of hybrid electronic circuit
into the equivalent description in AleC++. The execution version of PSpice2Alecsis program is
called p2a.

There are three main reasons for development of this program:

 Providing a possibility to compare simulation results of the same circuit obtained by
PSpice and Alecsis.

 Possibility to use big number of already developed and available PSpice libraries in
Alecsis.

261

262 Alecsis 2.3 - User’s manual

 PSpice2Alecsis enables PSpice/Alecsis co-simulation. It means that one part of the
circuit is described by using components and commands of the input language of
PSpice, while the other part of the circuit is described by using AleC++ constructions
and principles.

Why is PSpice/Alecsis co-simulation needed? PSpice is a language for electronic circuit
description, but without a possibility to describe new models. AleC++ possesses mechanisms for
modelling of new components. Besides, systems that are not of electrical nature can be described
in AleC++ and simulated in Alecsis, such as micromechanical systems, computer networks,
neural networks etc. Therefore, if a complex system includes standard electronic components,
that are well characterized in PSpice, but also components that cannot be found in PSpice,
PSpice/Alecsis co-simulation can be the best solution.

Note: PSpice2Alecsis is under active development. Therefore, in the moment when you
are reading this, new features may be added already. Besides, some of the limitations are due to
Alecsis, and not the p2a converter. However, Alecsis is going to be improved to allow better
compatibility with PSpice, too.

A10.2. Use of PSpice2Alecsis

The program is invoked from the command line as:

p2a file_name.ext

Where '.ext' is extension for PSpice input file (usually '.cir'.). This extension has to be
specified when invoking p2a, if it exists in the name of the PSpice input file. As a result, two
output files are created:

file_name.ac

file_name.cmm

AleC++ description is stored in file_name.ac, while comments on the conversion are stored
file_name.cmm. These comments include PSpice command list from file_name.ext, which
do not have its equivalent command (construction) in AleC++, nor can they be realised in
AleC++ in some other way, as well as some commands whose conversion has not been
implemented yet. In some specific situations, it can also contain some instructions for PSpice
description, which may lead to better conversion to AleC++. If the conversion is successful, file
for comments file_name.cmm is empty.

In file_name.ext, commands for including other files (or their parts) can be used:
.inc "inc_file_name.ext"

.lib "lib_file_name.ext"

can be used. In such case, conversion will be performed for these files, too. Therefore, files
inc_file_name.ac , inc_file_name.cmm, lib_file_file.ac, lib_file_name.cmm,
are also created.

Appendix 10. PSpice to Alecsis converter 263

In the beginning of each file that is a product of p2a program, following information is
given: version of the program, date and time of current file generation, input file name, output
file name with extension '.ac' and output file name with extension '.cmm'.

One of the major parts of PSpice2Alecsis converter is the parser, which identifies input
language commands of PSpice simulator. Depending on which command is identified, an
equivalent AleC++ command or language construction is generated. Two groups of commands
could be identified in input language of PSpice simulator:

•

•

commands describing circuit topology (components and their connections);

commands for simulation control.

Commands for circuit topology description start with a letter (the first letter of particular
component name), whereas commands for flow control analysis start with a point '.'.

PSpice identifies 22 different type of elements. They are not declared, since the first letter
in the component name denotes the type of the component. There are three types of components:

♦ analogue,

♦ digital (whose name starts with U)

♦ A/D and D/A converters for hybrid circuit (N, O)

A10.2.1. Analogue circuit conversion

PSpice2Alecsis converter reads the description in PSpice and creates description in
AleC++. Alecsis equivalents (AleC++ modules) of PSpice analogue components are already
prepared in the library, which is named PSpicecomp. This library is already compiled, and is
automatically included in resulting file using library command. Therefore, in each AleC++
source file_name.ac that is created by p2a, following commands are found:

#include "RLC_model.h"
#include "PSpicecomp.h"
library PSpicecomp;

It is supposed that these files are in directory visible to Alecsis compiler (see Appendix 1 on
Alecsis installation and usage). Files with extension '.h' are appropriate header files, containing
necessary declarations for definitions stored in the library.

In PSpicecomp library, there are the following modules, which correspond to certain
components from input language of PSpice simulator:

resistorPSp resistor (Rname component)
capacitorPSp capacitor (Cname component)
inductorPSp inductor (Lname component)

vsingen voltage source for a sinusoidal waveform which returns branch current
on its name

264 Alecsis 2.3 - User’s manual

vsingenv voltage source for a sinusoidal waveform
vexpgen voltage source for an exponential waveform which returns branch

current on its name
vexpgenv voltage source for an exponential waveform
vsffmgen voltage source for a frequency-modulated waveform which returns

branch current on its name
vsffmgenv voltage source for a frequency -modulated waveform
vpulgen voltage source for a pulse waveform which returns branch current on

its name
vpulgenv voltage source for a pulse waveform

csingen current source for a sinusoidal waveform which returns (branch)
current on its name

csingen0 current source for a sinusoidal waveform
cexpgen current source for an exponential waveform which returns (branch)

current on its name
cexpgen0 current source for an exponential waveform
csffmgen current source for a frequency-modulated waveform which returns

(branch) current on its name
csffmgen0 current source for a frequency-modulated waveform
cpulgen current source for a pulse waveform which returns (branch) current in

its name
cpulgen0 current source for a pulse waveform

ccswPSp current-controlled switch (Wname component)
vcswPSp voltage-controlled switch (Sname component)

In case there are more files containing circuit descriptions, these files are included in the
resulting AleC++ file containing root module.

A10.2.2. Digital circuit conversion

All digital components are sorted as one component type in PSpice, and their name starts
with U. Models of digital components that are implemented in PSPICE are prepared in libraries.
There are three libraries, and two files containing necessary declarations and definitions:

PSpicedef.h header file that contains used structure declarations, global data,
functions and modules

PSpicefun library that contains functions used in modelling (late functions,
resolution functions etc.)

PSpicestr library that contains digital module definition

PSpicemod library that contains redefined model cards

Appendix 10. PSpice to Alecsis converter 265

.alecrc header file that contains certain variable definitions

These five files ought to be visible by Alecsis, and are included in AleC++ file created by
p2a:

#include "PSpicedef.h"
#include ".alecrc"
library PSpicemod, PSpicesr, PSpicefun;

In case there are more files containing circuit descriptions, these files are included in the
resulting AleC++ file containing root module.

A10.2.3. Hybrid circuit conversion

Hybrid simulation means that a described circuit contains both analogue and digital
components. Due to different nature of mechanisms for analogue and digital simulation,
analogue and digital domains need to be divided by A/D and D/A converter insertion. Converter
insertion is executed by PSpice simulator itself (the same is valid for Alecsis, too). It can be also
done manually, by the user. A converter that is inserted is a subcircuit, which contains Oname or
Nname component for A/D or D/A converter, respectively.

A10.3. Conversion of PSpice commands with examples

A10.3.1. Conversion of components

Cname command:

This command is used to specify a capacitor in the input language of PSpice simulator.

Example 1:

In PSpice input language, capacitor named c1 is defined using:

c1 11 12 3.498E-12 ;

AleC++ code obtained after conversion with PSpice2Alecsis is:

root ...// or module
{
 // declartion part
 capacitor c1;
 ...
 // structure part

266 Alecsis 2.3 - User’s manual

 c1 (11, 12) 3.498e-12;
 ...
}

Example 2:

In PSpice input language, capacitor named c14 and its model card capmodel are defined
as:

c14 21 22 capmodel 300nF IC = 2.0V
.model capmodel cap (vc1=1.0 vc2=2.0 tc1=3.0 tc2=4.0)

AleC++ code obtained after conversion with PSpice2Alecsis is:

#include "pspcomp.h"
library "pspcomp";

//model card for new component capacitorPSp
model CPSp::capmodel{
 vc1=1.0;
 vc2=2.0;
 tc1=3.0;
 tc2=4.0;
}
root ... // or module
{
 // declaration part
 capacitorPSp c14;
 ...
 // structure part
 c14 (20, 21) { model = cmodel; value = 300; }
 ...
}

Rname command:

This command is used to specify a resistor in input language of PSpice simulator.

Example 1:

In PSpice input language, resistor named r705 is defined using:

r705 c1 c2 55

AleC++ code obtained after conversion with PSpice2Alecsis is:

root ... // or module
{
 // declaration part
 resistor r705;
 ...
 // structure part

Appendix 10. PSpice to Alecsis converter 267

 r705 (c1, c2) { value = 55; }
 ...
}

Example 2:

In PSpice input language, resistor named r604 and its TC parameter are defined using:

r604 13 10 24.87 TC=10,1

AleC++ code obtained after conversion with PSpice2Alecsis is:

#include "pspcomp.h"
library "pspcomp";

//model card for new component resistorPSp
model RPSp::TCr604{
 tc1=10;
 tc2=1;
}

root ... // or module
{
 // declaration part
 resistorPSp r603;
 ...
 // structure part
 r603 (13, 10) { model = resmod; value = 24.87; }
 ...
}

Example 3:

In PSpice input language an resistor named r603, its TC parameter and its model card
resmod are defined as:

r603 13 10 resmod 24.87 TC=10,1
* command for specifying model card
model resmod res (r=1.5 tc1=0.02 tc2=0.005

AleC++ code obtained after conversion with PSpice2Alecsis is:

include "pspcomp.h"
library "pspcomp";

// model card for new component resistorPSp
model RPSp::resmod{
 r=1.5;
 tc1=0.02;
 tc2=0.005;
}

root ... // or module
{
 // declaration part

268 Alecsis 2.3 - User’s manual

 resistorPSp r603;
 ...
 // structure part
 r603 (13, 10) { model = resmod; value = 24.87; }
}

Dname command:

This command is used to specify a diode in input language of PSpice simulator.

Example:

In PSpice input language diode named d12 and its model card are defined as:

d12 c31 c32 dmodel AREA = 20.9
.model dmodel D (Is=1E-13 Vj = 0.7)

AleC++ code obtained after conversion with PSpice2Alecsis is:

spice {
.model dmodel d (is=1e-13 vj=0.7) }
root ... // or module
{
 // declaration part
 diode d12;
 ...
 // structure part
 d12 (c31, c32) { model = dmodel; area = 20.9; }
 ...
}

Gname command with specification poly:

In the input language of PSpice simulator, this command is used to specify a voltage-
controlled current source (with polynomial dependence).

Example:

In PSpice input language, an voltage-controlled current source named g983 which has
three pairs of nodes for voltage control, and eight coefficients, is defined as:

g983 983 0 poly(3)(1 2)(3 4)(5 6) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

AleC++ code obtained after conversion with PSpice2Alecsis is:

module gpoly3 (node i,j, n1, n2, n3, n4, n5, n6)
{
 cgen genc;
 genc (i,j);

Appendix 10. PSpice to Alecsis converter 269

 action per_moment (double p0=0.0, double p1=0.0, double p2=0.0,
double p3=0.0, double p4=0.0, double p5=0.0, double p6=0.0, double
p7=0.0, double p8=0.0, double p9=0.0)

 {
 genc->value = p0 + p1*(n1-n2) + p2*(n3-n4) + p3*(n5-n6) +
p4*(n1-n2)*(n1-n2) + p5*(n1-n2)*(n3-n4) + p6*(n1-n2)*(n5-n6) +
p7*(n3-n4)*(n3-n4) + p8*(n3-n4)*(n5-n6) + p9*(n5-n6)*(n5-n6);
 }
}
root ...{ // or module
 // declaration part
 gpoly3 g983;
 ...
 // structure part
 g983 (983, 0, 1, 2, 3, 4, 5, 6) {p0=1.0; p1=2.0; p2=3.0; p3=4.0;
 p4=5.0; p5=6.0; p6=7.0; }
}

Note 1:

Poly specification of Ename and Gname commands has two syntax options:

with brackets:
G983 983 0 poly(3) (1 2)(3 4)(5 6) 1.0 2.0 3.0 4.0 5.0 6.0 7.0

without brackets:
G983 983 0 poly(3) 1 2 3 4 5 6 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Note 2:

Value of the controlling variable, having polynomial dependence on V , , …, V , is
defined :

1 V2 n

V V V Vout n(, , ... ,)1 2 = + P0

P V P V P Vn n1 1 2 2* * ... *+ + + +
P V P V V P V Vn n n n+ + ++ + + +1 1

2
2 1 2 1* * * ... * * n

n

P V V P V V P V Vn n n n2 1 2 2 2 2 2 3 2 1 2+ + + −+ + + +* * * * ... * *
...+
P Vn

n n n n!
(()!

* *
2 2 2− +

V

Where: are polynomial coefficients. P P P0 1 2, , , ...

Ename command with specification value:

This command is used in input language of PSpice simulator to specify a voltage source,
whose value is controlled by a function.

270 Alecsis 2.3 - User’s manual

Example:

In PSpice input language, a function that controls voltage source named esum is defined
using following command:

esum 4 0 value = {v(2)*v(6)*i(vr)*v(5)*i(vg)}

AleC++ code obtained after conversion with PSpice2Alecsis is:

module vvalue1 (node i,j; node n1; node n2; current c1; node n3;
current c2)
{
 vgen genv;
 genv (i,j);

 action per_moment ()
 {
 genv->value = n1*n2*c1*n3*c2;
 }
}

root ... // or module
{
 // declaration part
 vvalue1 esum;
 ...
 // structure part
 esum (4, 0, 2, 6, vr, 5, vg);
 ...
}

Ename command with specification table:

This command is used to specify a voltage source, whose control is given as a table.

Example:

In PSpice input language, voltage source named erele whose value is controlled by a
function, is defined with the following command:

erele 2 0 table {V(1)} = (2, -1) (2.01, 1)

AleC++ code obtained after conversion with PSpice2Alecsis is:

module current vtable1 (node i,j; node n1)
{
 vgen vtable1;
 return vtable1 (i,j) 0.0;

 action per_moment ()
 {
 int loop;
 int i, j;

Appendix 10. PSpice to Alecsis converter 271

 double izlaz, x1, x2, y1, y2;
 static const double table[2][2] = {
 2, -1,
 2.01, 1,
 };

 loop = 1;
 i = 0;
 while (loop == 1)
 {
 if (n1 > table[i][0])
 {
 if (i < 1)
 i++;
 else
 {
 loop = 0;
 izlaz = table[1][1];
 }
 }
 else
 {
 loop = 0;
 if (i != 0)
 {
 x1 = table[i-1][0];
 x2 = table[i][0];
 y1 = table[i-1][1];
 y2 = table[i][1];
 izlaz = ((n1 - x1)/(x2 - x1))*(y2 - y1) + y1;
 }
 else if(n1 < table[i][0])
 izlaz = table[i][1];
 }
 }
 vtable1->value = izlaz;

 }
}

root ... // or module
{
 // declaration part
 vtable1 erele;
 ...
 // structure part
 erele (2, 0, 1);
 ...
}

Vname (Iname) command

Vname command is used to specify an independent voltage source in the input language of
PSpice simulator. Iname command is used to specify an independent voltage source in the input
language of PSpice simulator.

272 Alecsis 2.3 - User’s manual

Example:

In PSpice input language an independent voltage source with sinusoidal waveform named
vsin is defined with the following command:

vsin 10 5 sin(2 2 5Hz 1 10 30)

AleC++ code obtained after conversion with PSpice2Alecsis is:

#include "pspcomp.h"
library "pspcomp";
root ... // or module
{
 // declaration part
 vsingen vsin;
 ...
 // structure part
 vsin (10,5) { voff=2.0v; vampl=4.0v; freq=50hz; td=1msec; df=10;
 phase=30; }
 ...
}

Xname command:

In the input language of PSpice simulator, this command is used to specify call of a
subcircuit.

Example:

In PSpice input language, call of subcircuit named xcomp is defined with using following
command (called subcircuit has five nodes (0, 3, nvdd, nvss, 4) and subcircuit’s definition has
name tl064/ti):

xcomp 0 3 nvdd nvss 4 tl064/ti

AleC++ code obtained after conversion with PSpice2Alecsis is:

root ... // or module
{
 // declaration part
 tl064_slash_ti xcomp;
 ...
 // structure part
 xcomp (0, 3, nvdd, nvss, 4);
}

Mname command:

This command is used to specify a MOSFET in the input language of PSpice simulator.

Appendix 10. PSpice to Alecsis converter 273

Example:

In PSpice input language, MOSFET named mmosfet and its model card modmos are
defined as:

mmosfet 0 2 100 100 modmos L=33u W=12u
+ AD=288p AS=288p PD=60u PS=60u NRD=14 NRS=24 NRG=10
.model modmos nmos (lambda=2)

AleC++ code obtained after conversion with PSpice2Alecsis is:

spice {
.model modmos nmos (lambda=2) }
root ... // or module
{
 // declaration part
 mosfet mmosfet;
 ...
 // structure part
 mmosfet (0, 2, 100, 100) {model = nweak; l=33u; w=12u; ad=288p;
 as=288p; pd=60u; ps=60u; nrd=14; nrs=24; nrg=10;}
 ...
}

Qname command:

This command is used to specify a BJT in the input language of PSpice simulator.

Example:

In PSpice input language, BJT named mmosfet and its model card modbjt are defined as:

qbjt a b c model605 area=24.87
.model modbjt npn (Is=17.01E-12 Bf=110 Vje=0.85)

AleC++ code obtained after conversion with PSpice2Alecsis is:

spice {
.model modbjt npn (is=17.01e-12 bf=110 vje=0.85) }
root ... // or module
{
 // declaration part
 bjt qbjt;
 ...
 // structure part
 qbjt (a, b, c) { model = model604; area = 24.87; }
 ...
}

Jname command:

This command is used to specify a JFET in the input language of PSpice simulator.

274 Alecsis 2.3 - User’s manual

Example:

In PSpice input language, JFET named jjfet and its model card modjfet are defined
as:

Jjfet a b c modjfet area=24.87
.model modjfet pjf(Is=17.01E-12 Beta=110.5E-6 Vto=-1)

AleC++ code obtained after conversion with PSpice2Alecsis is:

spice {
.model modjfet pjf (is=17.01e-12 beta=110.5e-6 vto=1) }
root ... // or module
{
 // declaration part
 junctionfet jjfet;
 ...
 // structure part
 jjfet (a, b, c) { model = model603; area = 24.87; }
}

Sname command:

This command is used to specify a voltage-controlled switch in the input language of
PSpice simulator.

Example:

In PSpice input language, voltage controlled switch named svcs and its model card
sw1mod are defined as:

svcs 13 17 2 0 sw1mod
.model sw1mod vswitch (ron=1.0 roff=1e+6 von=1.0 voff=0.0)

AleC++ code obtained after conversion with PSpice2Alecsis is:

#include <alec.h>
#include "pspcomp.h"
library "pspcomp";

// Model card for new component vcswPSp.Coressponds to the .model
// in example.
model vSWPSp::sw1mod{
 ron=1.0;
 roff=1e+6;
 von=1.0;
 voff=0.0;
}

root ... // or module
{
 // declaration part
 vcswPSp svcs;

Appendix 10. PSpice to Alecsis converter 275

 // structure part
 ...
 svcs (13, 17, 2, 0) model = sw1mod;
 ...
}

Wname command:

This command is used to specify a current-controlled switch in the input language of
PSpice simulator.

Example:

In PSpice input language, current-controlled switch named wccs and its model card wmod
are defined as:

wccs 13 17 vc wmod
.model wmod iswitch (ron=2.0 roff=1e+9 ion=1e-2 ioff=1e-6)

AleC++ code obtained after conversion with PSpice2Alecsis is:

#include <alec.h>
#include "pspcomp.h"
library "pspcomp";

// Model card for new component AleC++ ccswPSp. Coressponds to the
//.model in example.
model cSWPSp::wmod{
 ron=2.0;
 roff=1e+9;
 ion=1e-2;
 ioff=1e-6;
}

root ... // or module
{
 // declaration part
 ccswPSp wccs;
 ...
 // structure part
 wccs (13, 17, vc) model = wmod;
}

Uname command:

This command is used to specify digital components in the input language of PSpice
simulator.

276 Alecsis 2.3 - User’s manual

Example 1:

In PSpice input language, an AND logical circuit named uand21, and its model cards io1
(input/output model card) and tm01 (timing model card), are defined as:

.model io1 UIO (inld=0.1 outld=0.2 drvh=1.0 drvl=2.0 drvz=3.0)

.model tm01 UADC (tphlmn=1 tphlty=2 tphlmx=3 tplhmn=0.1 tplhty=0.2
tplhmx=0.3)
uand21 AND(2) $G_DPWR $G_DGND in0 in1 out tm01 io1

AleC++ code obtained after conversion with PSpice2Alecsis is:

#include "pscdef.h"
include ".alecrc"
library pscmod, pscstr, pscfun;

model uadc::tm01_io1{
 tphlmn=1.0
 tphlty=2.0
 tphlmx=3.0
 tplhmn=0.1;
 tplhty=0.2;
 tplhmx=0.3;
 inld=0.1;
 outld=0.2;
 drvh=1.0;
 drvl=2.0;
 drvz=3.0;
}

root ... // or module
{
 module ugate::and_2 uand21;
 ...
 uand21(out,in0,in1) model = tm01_io1;
 ...
}

Example 2:

In PSpice input language, a digital stimulus generator with LOOP specification named
ustim is defined with the following command.

Ustim STIM(4,13)
+ $G_DPWR $G_DGND
+ 4 3 2 1 IO_STIM5 TIMESTEP=10ns
+ 0c 00
+ 5c 03
+ LABEL=STARTLOOP1
+ 100ns decr by 01
+ 200ns goto startloop1 until lt 00
+ +10ns 13
+ 700ns 06
+ LABEL=STARTLOOP2
+ 720ns 07
+ 800ns 10

Appendix 10. PSpice to Alecsis converter 277

+ 900ns goto startloop2 2 times

AleC++ code obtained after conversion with PSpice2Alecsis is:

#include "pscdef.h"
#include ".alecrc"

library pscmod, pscstr, pscfun;
module STIM1ustim (signal ps_full out out1, out2, out3, out4)
{
 signal four_full y[1:4];
 action ()
 {
 process
 {
 int init = 1;

 if (init) { y <- "0000"; init = 0; wait y; }
 else
 y <- "0011" after 50ns; wait y;
 y <- "0010" after 50ns; wait y;
 y <- "0001" after 100ns; wait y;
 y <- "1011" after 110ns; wait y;
 y <- "0110" after 390ns; wait y;
 y <- "0111" after 20ns; wait y;
 y <- "1000" after 80ns; wait y;
 y <- "0111" after 100ns; wait y;
 y <- "1000" after 80ns; wait y;
 y <- "0111" after 100ns; wait y;
 y <- "1000" after 80ns; wait y;

 } //process

 process {
 int init = 1;
 if (init)
 {
 out1 <- '0';
 out2 <- '0';
 out3 <- '0';
 out4 <- '0';
 init = 0;
 wait y;
 }

 out1 <- y[1];
 out2 <- y[2];
 out3 <- y[3];
 out4 <- y[4];
 wait y;
 } // process

 } //action
}

root ... // or module
{

278 Alecsis 2.3 - User’s manual

 module STIM1ustim uname;
 ...
 ustim (4, 3, 2, 1) { model = io_stim5;}
 ...
}

A10.3.2. Conversion of simulation control statements

.TRAN statement:

The .tran statement causes a transient analysis to be performed. The general form of the
statement is:

.tran[/OP] <print_step> <final_time> [no_print [step_celling]] [UIC]

The transient analysis calculates the circuit’s behaviour over time, starting at TIME = 0
and going to <final time>. Alecsis, in its current release, performs transient analysis only, so
this command can be realized in AleC++.

OP specification demands printing of the complete information about DC analysis in
textual output file. This has not its equivalent in AleC++.

UIC specification orders simulator to set the voltage across the capacitors and the current
through the inductors at DC analysis, which is used to determine limit conditions for transient
analysis. Since Alecsis in this release does not possess a mechanism for setting the voltage
across the capacitors and the current through the inductors, UIC specification cannot be realised
either.

AleC++ equivalent for PSpice .tran command is is timing command. As we have
already explained, timing command does not support all parameters supported by .tran
command. .tran command parameters supported by timing command are:

 print_step --- tprint (Alecsis)

 final_time --- tstop (Alecsis)

 step _celling --- a_stepmax (Alecsis)

timing command does not support no_print parameter. However, timing command
demands a parameter which does not exist in .tran command - a_step parameter. It is
calculated for timing command on the basis of print_step parameter from .tran command, as
print_step divided by 5.

Example 1:

In PSpice input language tran statement in basic form (with two parameters that cannot
be omitted) is defined as.

.tran 2u 10m UIC

Appendix 10. PSpice to Alecsis converter 279

AleC++ code obtained after conversion with PSpice2Alecsis is:

timing { tprint = 2u; a_step = 2u/5; tstop = 10m; }

Example 2:

In PSpice input language .tran statement in complete form (with all parameters) is
defined as:

.tran 2u 20m 1u 2u UIC

AleC++ code obtained after conversion with PSpice2Alecsis is:

timing { tprint = 2u; a_step = 2u/5; tstop = 20m; a_stepmax = 2u;}

.TEMP statement:

The .temp statement sets the temperature at which simulation is performed. If more than
one temperature is given, then simulation is repeated for each temperature. The general form of
.temp statement is:

.temp <temperature_value>*

The equivalent command to .temp command from PSpice in Alecsis is temp option in
options command. The limitation of Alecsis is that it does not possess a mechanism to execute
simulation for more than one temperature. Because of that, if more than one temperature value
appears in .temp command PSpice2Alecsis will take only the first one, and in the file for
commenting conversion (a file with '.cmm' extension) a note will be found that .temp command
does not have a fully equivalent command in Alecsis.

An example of .temp command conversion into . options command follows. It should
be noted that temperature in PSpice is specified in Centigrade degrees, while in Alecsis it is in
Kelvin degrees.

Example:

In PSpice input language temperature is defined using the following command:

 .temp 50 75

AleC++ code obtained after conversion with PSpice2Alecsis is:

 options {temp = 323.000; }

.SUBCKT statement:

This statement begins the definition of a subcircuit. The definition is ended with .ends
statement. All the statements between .subckt and .ends form the subcircuit the definition.

280 Alecsis 2.3 - User’s manual

Subcircuit definition statements should contain only topology description (statements without a
leading '.'), and possibly .model statements.

The general form of .subckts statement and complete form of subcircuit are :

.subckt <name_subcircuit> [node]*

 [optional : <<interface_node> = <default_value>>*]

 [params : <<name> = <value>>*]

 [text : <<name> = <text> = <value>>*]

 ; structure block

 .ends [name_subcircuit]

A subcircuit from PSpice corresponds to Alecsis module.

Note:

optional and text specifications are not realised in converter.

Example:

In PSpice input language, beginning of a subcircuit named ICL7652/TI is defined using
the following command.

.subckt ICL7652/TI 1 2 3 4 5

AleC++ code obtained after conversion with PSpice2Alecsis is:

module icl7652_slash_ti (node 1; node 2; node 3; node 4; node5) {
...//structure of module (subcircuit)
}

.PRINT and .PROBE statements:

The .print statement prints out results from dc, ac, noise, or transient analysis in the
form of table, referred to as print tables. The .print/dgtlchg form is for digital output
variables only. The general form of the statement is:

.print [/DGTLCHG][DC][AC][NOISE][TRAN][(output_variable)]*

The .probe statement writes the results from dc, ac, and transient analyses to a file
probe.dat for use by the Probe graphic postprocessor. The general form of the statement is:

.probe [/csdf] [output_variable]*

Appendix 10. PSpice to Alecsis converter 281

Note:

For showing simulation results in PSpice we can use either .print command or .probe
command, or both simultaneously. Both commands can be used without arguments, and in that
case complete simulation results are included (values of all circuit quantities). (Conversion into
AleC++ code is not supported for this case.). .print and .probe commands could print a great
number of output value categories. In this release of PSpice2Alecsis, conversion of only one
category - node voltage (e.g. V(1), V(a_node)) - is supported.

Example:

In PSpice input language, .PRINT and .PROBE statements are defined using following two
statements.

.print tran v(305) v(505) v(105 505) v(308 108) v(1408 708)

.probe v(608) v(1349 321) v(1402) v(305) v(505) i(lname) i(vname)

AleC++ code obtained after conversion with PSpice2Alecsis is:

plot {
 //PRINT output :
 node 305; node 505;
 //PROBE output :

 node 608; node 1402; node 305; node 505;
}

.PARAM statement:

This command defines global parameters of simulation. A global parameter can be a
constant or expression. This command is realised in AleC++ by means of preprocessor command
#define.

Example:

In PSpice input language a .param statement is defined with the following command.

.param e19 = {1 / (6.28 * sqrt(ll * cc)) }

AleC++ code obtained after conversion with PSpice2Alecsis is:

#define e19 1/((6.28*sqrt(ll*cc))

.INC statement:

The .inc statement is used to insert (include) the content of another file into the current
file. Including files is the same as simply bringing the file's text into the current file. Included
files may contain all statements with these exceptions: no title lines is allowed (use a comment);
.end statement is not allowed. The general form of .inc statement is:

282 Alecsis 2.3 - User’s manual

.inc "file_name"

Note:

The current converter realisation allows that only subcircuits and .inc command can be
found in the included file.

Example:

In PSpice input language, .inc statement is defined with as.

.inc "dat1.mod"

AleC++ code obtained after conversion with PSpice2Alecsis is:

#include "dat1.ac”

.LIB statement:

The .lib statement is used to reference a model or subcircuit library in another file. The
convenience (with respect to .inc command) is that the complete library is not read through,
but only needed objects are found and included in circuit description.

The general form of the statement is:

.lib "file_name"

Note:

For the time being, .lib statement is realised in the same way as .inc command - like
#include preprocessor command.

Example:

In PSpice input language .lib statement is defined as:

.lib "dat1.mod"

AleC++ code obtained after conversion with PSpice2Alecsis is:

#include "dat1.ac"

.FUNC statement:

This statement is used to define "functions" that may be used in expressions. This
command is realised in AleC++ like the macro by using #define preprocessor command.

Appendix 10. PSpice to Alecsis converter 283

Example:

In PSpice input language max functions is defined using the following command.

.func max (a,b) (a + b + abs(a - b))) / 2

AleC++ code obtained after conversion with PSpice2Alecsis is:

#define max (a,b) ((a)+(b)+abs((a)-(b))))/2.0

A10.4. Limitations of PSpice2Alecsis converter

This chapter deals with the restrictions of PSpice2Alecsis program. There are two causes
for restrictions:

 some commands and specifications of the simulator input language can not be realised
in AleC++, due to differences in simulator engines.

 conversion for certain commands and command specifications of PSpice simulator
input language is not yet implemented in PSpice2Alecsis

Limitations are divided into three groups:

limitations of commands describing circuit topology (components and their
connections);

•

•

•

limitations of commands for simulation control;

general limitations.

In the next sections, following description is used:

yes - PSpice command is completely supported

no - PSpice commands is only recognised, but not supported

yes* - PSpice command is partly supported

A10.4.1. Limitations of circuit topology description

Bname --- no
Cname --- yes* (IC specification is not supported.)
Dname --- yes
Ename --- yes* (FREQ specification is not supported.

 LAPLACE specification is supported only under the following conditions:

− transfer function can be :
A s B

C s D s E

*

* *

+

+ +2 ,

− A, B, C, and D coefficients can constants or variables, but more complex
expressions are not allowed.

284 Alecsis 2.3 - User’s manual

− expression which shows control input can only be voltage or current.)
Fname --- yes
Gname --- yes* (FREQ specification is not supported.

LAPLACE specification is supported only under the following conditions:

− transfer function can be :
A s B

C s D s E

*

* *

+

+ +2 ,

− A, B, C, and D coefficients can constants or variables, but more complex
expressions are not allowed.

− expression which shows control input can only be voltage or current.)
Hname --- yes
Iname --- yes* (AC and DC specifications are not supported.)
Jname --- yes
Kname --- no
Lname --- yes* (IC specification is not supported.)
Mname --- yes
Nname --- yes
Oname --- yes
Qname --- yes
Rname --- yes
Sname --- yes
Tname --- no
Uname --- yes* (MNTYMXDLY and IO_LEVEL specification are not supported.)
Vname --- yes* (AC and DC specifications are not supported.)
Wname --- yes
Xname --- yes* (TEXT specification is not supported.)

A10.4.2. Limitations of commands for simulation control

.ac --- no

.dc --- no

.distribution --- no

.end --- yes

.ends --- yes

.four --- no

.func --- yes

.ic --- yes* (Assignment of voltage between two nodes is not supported, because this
version of Alecsis does not possess the convenient mechanism. For the same
reason, IC specifications in commands for inductor and capacitor description are
not supported.)

.inc --- yes* (Included library, according to the PSpice syntax, can contain all PSpice
commands except title lines and .end command. However, in an included file,
PSpice2Alecsis supports only commands that can be found in the subcircuit
(commands for description of PSpice components and/or subcircuits) and .inc
command.)

.lib --- yes* (For the time being, .lib command is realised the same way as .inc command
- as #include preprocessor command.)

Appendix 10. PSpice to Alecsis converter 285

.loadbias --- no

.mc --- no

.model --- yes

.nodeset --- no

.noise --- no

.op --- no

.options --- yes* (Only temperature parameter is supported.)

.param --- yes

.plot --- no

.print --- yes* (See example for .print command in the section A10.3.2.)

.probe --- yes* (See example for .probe command in the section A10.3.2.)

.savebias --- no

.sens --- no

.step --- no

.subckt --- yes* (OPTIONAL and TEXT specification are not supported.)

.temp --- yes* (More than one temperature value is not supported, because Alecsis does
not possess the convenient mechanism to repeat simulation.)

.tf --- no

.tran --- yes* (no_print parameter is not supported,
UIC specification is not supported.

.watch --- no

.wcase --- no

.width --- no

.text --- no

A10.4.3. General limitations

 At conversion, capital letters become small ones (small letters stay the same).

 In AleC++, characters ‘$’, ‘%’, ‘*’, and ‘/’ cannot be used in names of variables and nodes.
For that reason, when PSpice2Alecsis reads such signs, it converts them into '_dollar_',
'_percentage_', '_slash_', and '_star_', respectively.

 Voltage between two nodes cannot be initialised in this version of Alecsis (only node votlage
with respect to ground node can be initialzied). It means that the command

.ic v(1, 2) = 5.0v .

cannot be realised in IC specification in Lname and Cname commands.

 Connection of text lines using '+' sign is not made possible for every command. For instance,
in .subckt command, it is not supported that each node name can be found in separate line.
The same applies to STIM specification of Uname command.

 PSpice2Alecsis does not recognise line comment in lines that are the continuation of the
previous ones (beginning with '+')

286 Alecsis 2.3 - User’s manual

 PSpice2Alecsis does not allow usage of following keywords as names of variables and
nodes: TIMSTEP, MNTYMXLY and IO_LEVEL

 PSpice2Alecsis does not allow usage of keyword FILE as the name of a variable or a node in
Xname and .subckt commands.

