
Appendix 4
Alecsis assembler

Virtual processor is one of the main parts of Alecsis simulation engine. It emulates the behaviour of a real
hardware processor by executing commands successively according to type. The set of legal instructions for the
virtual processor comes with adaptations and changes from the set for MC68020, Motorola microprocessor.

Text in AleC++ can be translated into the assembly language (assembler) code if you use option '-S' (file
with the extension '.as') in the program call. Besides, you can write assembler code in the text using command
asm (see chapter 2). It is not likely that the user may need assembler commands for modelling and simulation.
However, it may be necessary to understand assembler if the problems arise when installing Alecsis on
different computers.

When using assembler you can encounter some memory problems, problems with honouring various
conventions, etc., thus you need to be careful when using it. The use of assembler is tolerated only for writing of
very difficult functions whose time of execution is crucial for the program. Compiler sometimes copies interim
results into temporary registers to protect them from deleting. This can be more than necessary sometimes, but
compiler uses the safer method. Since Alecsis does not have a multipassage optimizer (besides the peephole
optimizer, which does not deal with the code as a whole but only with 2-3 neighbouring instructions), there is
always room for a shorter and more efficient code written in assembler. Optimizing can, however lead you into
dangerous waters, which require the knowledge and understanding of the work of virtual processor. Notice that
Alecsis always creates the shortest code from the given text (syntax-directed compilation). Mentioned optimizations
refer to rearrangement of some expression in order to eliminate extraneous calculations.

198

Appendix 4. Alecsis assembler 199

A4.1. Operands in assembler instructions

The cycle of the virtual processor divides into two phases: fetching of operands and execution of
instructions. Some conventions regulate what can be an assembler operand. Primary (basic) operands refer to a part
of memory called resource in Alecsis. That is an internal table containing the base addresses off all regions the
potential operands can come from. Operation fetch comes down to two additions: one when indexing resource
tables; and the other for addition of the address obtained in that way and the operand offset. The position in the
table is set using mnemonics pointing the type of the source, while offset is given by a number. Virtual processor
supports the following resource mnemonics (mnemonic always goes after the character '%').

%dn - general purpose registers (min. 64 bytes)

%vn - local memory (allocated using instruction link)

%fn - formal parameter (or action parameter, inside a process)

%mn - object passed to a function or a process (if it fits the declaration)

%an - general purpose address registers (min. 64 bytes)

%sn - local static memory

%_id - identifier id (name with external linking)

(%an) - content of memory pointed to by the address register (dereferencing)

%bn - register pointing to resource vector

%en - memory of the n-th element (if it has parameters)

%nn - memory of the value of the signal at the position n (in processes) in the current time instant

The last two operands can appear in processes only, since they refer to object that can be declared only in
modules. All elements are indexed by the order of declaration, with the index 0 being the first element. Operand
points to the pointer to memory of action parameters, if the component has them. The last operand points to the
memory containing the value of the signal with the index n (formal parameters are indexed as 0, 1, 2,.., while the
local ones as -1, -2, -3, ...). To get the real address you need to multiply the index and the length of every signal in
bytes.

Beside these operands, all expressions of AleC++ can be found in instructions, including constants and
variables. For example:

int i, j = 2;
asm movq.l i, j;

The previous command copies the content of variable j into variable i. You should avoid complex
expressions, since they can use some registers in the way that creates a conflict with the current instruction.

Operand of instructions for conditional or unconditional branching can be name of a label, which can be
inside an asm region or even outside it, but within the original function or a process. The instruction itself can
have label using the syntax explained in Chapter 3.

The names of functions in the code are created using the mechanism known as name mangling (Chapter 4).
You can see how this name is created if you compile the file containing the definition of the function using the
option '-S', and read its name from the assembler file. For example, function:

200 Alecsis 2.3 - User’s manual

int foo (int, int, double**, class Point, ...);

can be called using instruction:

asm jsr %dn, %_foo_iiPPd5Point_e ;

where %dn labels the beginning of memory occupied by the function arguments. The name of the function is
prolonged with extensions, that explain which formal parameters are declared for function foo. This enables
function overloading.

When using temporary registers (%dn) you can cross over limit of 64 bytes. Actually, all registers with the
index larger than sizeof(double) will be transferred to the local memory, allocated as much as needed. This
especially refers to passing down the arguments during a function call.

A4.2. Assembler instructions

Most of instructions for virtual processor have more than one version. The current implementation of virtual
processor supports the following types: b (byte), l (long), d (double). Some instructions do not have all of these
types, or have one as default. The type is appended as the extension of the instruction mnemonics (add.1,
move.d). The type gives information about the number of bytes used by the instruction (sometime the meaning of
the instruction, too). The exception is the pair mset/movm where you can copy an unlimited number of bytes).

mset 64
movm %_s1, %_s2

In this example, the first 64 bytes pointed to by the external symbol s2 are copied to external symbol s1.

A4.2.1. Instructions of Alecsis virtual processor

mnemonic syntax operation supported
types

add add.t op1, op2 %d0 = op1 + op2 b, l, d
adda adda.t op1, op2 %d0 = op1 += op2 b, l, d
addr addr.t op1, op2 %a0 = op1[op2] Indexing

operation has a type, to render
multiplication of the index by the type

op1 unnecessary

b, l, d

addq addq.t op1, op2 op1 += op2 l
asr asr.t op1, op2 %d0 = op1 << op2 b, l
asra asra.t op1, op2 %d0 = op1 <<= op2 b, l
band band.t op1, op2 %d0 = op1 & op2 b, l
banda banda.t op1, op2 %d0 = op1 &= op2 b, l
bnand bnand.t op1, op2 %d0 = op1 ~& op2 b, l
bnor bnor.t op1, op2 %d0 = op1 ~| op2 b, l
bnot bnot.t op %d0 = ~op b, l
bor bor.t op1, op2 %d0 = op1 | op2 b, l
bora bora.t op1, op2 %d0 = op1 |= op2 b, l

Appendix 4. Alecsis assembler 201

bxnor bxnor.t op1, op2 %d0 = op1 ~^ op2 b, l
conb conb.t op conversion of op from type byte

into type t
b, l, d

cond cond.t op conversion of op from type double
into type t

b, l, d

conl conl.t op conversion of op from type long
into type t

b, l, d

decl decl.t op %d0 = --op b, l
decr decr.t op %d0 = op-- b, l
devb dev.t op1, op2 %d0 = op1 / op2 l, d
deva deva.t op1, op2 %d0 = op1 /= op2 b, l, d
eq eq.t op1, op2 %d0 = op1 == op2 b, l, d
ge ge.t op1, op2 %d0 = op1 >= op2 b, l, d
gt gt.t op1, op2 %d0 = op1 > op2 b, l, d

incl incl.t op %d0 = ++op b, l
incr incr.t op %d0 = op++ b, l
jfn jfn op1, findx jump to the intrinsic function with the

index findx and arguments
beginning from the address op1

/

jnz jnz label jump to label if %d0 != 0 /

jp jp label jump to label /

jsr jsr op1, op2 jump to function with address op2
and arguments beginning from address

op1

/

jz jz label jump to label if %d0 == 0 /

le le.t op1, op2 %d0 = op1 <= op2 b, l, d
lea lea op1, op2 op1 = &op2 /
link link.t %b0, size shift of the stack for t*size bytes b, l, d

lsl lsl.t op1, op2 %d0 = op1 << op2 b, l
lsla lsla.t op1, op2 %d0 = op1 <<= op2 b, l
lt lt.t op1, op2 %d0 = op1 < op2 b, l, d
mod mod.t op1, op2 %d0 = op1 % op2 b, l
moda moda.t op1, op2 %d0 = op1 %= op2 b, l
move move.t op1, op2 %d0 = op1 = op2 b, l, d
movm movem op1, op2 copying of content of op2 to op1 -

number of copied bytes is determined
by the instruction mset

/

movq movq.t op1, op2 op1 = op2 b, l, d
mset mset op control of instruction movm /

mul mul.t op1, op2 %d0 = op1 * op2 b, l, d
mula mula.t op1, op2 %d0 = op1 *= op2 b, l, d
neg neg.t op %d0 = - op b, l, d
neq neq.t op1, op2 %d0 = op1 != op2 b, l, d
not not.t op %d0 = !op b, l, d
rts rts exit from a procedure /

sub sub.t op1, op2 %d0 = op1 - op2 b, l, d
suba suba.t op1, op2 %d0 = op1 -= op2 b, l, d
subq subq.l op1, op2 op1 -= op2 l
unlk unlk %b0 return of the local memory stack

during the exit from a procedure
/

xor xor.t op1, op2 %d0 = op1 ^ op2 b, l

202 Alecsis 2.3 - User’s manual

xora xora.t op1, op2 %d0 = op1 ^= op2 b, l

A4.2.2. Instructions of Alecsis virtual coprocessor

In the previous section, basic instruction set of virtual processor is given. Beside those instruction, virtual
processor has something you can call "coprocessor". Those are additional instructions supporting some of most
frequently used functions. This makes a program more effective, especially in the case of mathematical functions,
which are used often in modelling of analogue circuits.

mnemonic syntax operation supported
types

putchar putchar.l op %d0=putchar (op) l
fputc fputc.l op1, op2 %d0 = fputc (op1, op2) l

getchar getchar.l %d0 = getchar() l
fgetc fgetc.l op %d0 = fgetc (op) l
strcpy strcpy.l op1, op2 %d0 = strcpy(op1, op2) l
strcmp strcmp.l op1, op2 %d0 = strcmp(op1, op2) l
strlen strlen.l op %d0 = strlen(op) l
malloc malloc.l op %d0 = malloc (op) l
calloc calloc.l op1, op2 %d0 = calloc (op1, op2) l
free free op free (op) /
attr attr.l indx, offset returns the address of user-defined

attributes for signals with the position
indx and offset offset

l

slen slen.l indx, offset returns the length of the signal-vector
with the position indx and offset

offset

l

fabs fabs.d op %d0 = fabs (op) l, d
exp exp.d op %d0 = exp (op) d
log log.d op %d0 = log (op) d

log10 log10.d op %d0 = log10 (op) d
pow pow.d op %d0 = pow (op) d
sqrt sqrt.d op %d0 = sqrt (op) d
sin sin.d op %d0 = sin (op) d
cos cos.d op %d0 = cos (op) d
tan tan.d op %d0 = tan (op) d
asin asin.d op %d0 = asin (op) d
acos acos.d op %d0 = acos (op) d
atan atan.d op %d0 = atan (op) d
atan2 atan2.d op1, op2 %d0 = atan2 (op1, op2) d
sinh sinh.d op %d0 = sinh (op) d
cosh cosh.d op %d0 = cosh (op) d
tanh tanh.d op %d0 = tanh (op) d
floor floor.d op %d0 = floor (op) d
ceil ceil.d op %d0 = ceil (op) d

You can use coprocessor instructions by honouring standard conventions.

Appendix 4. Alecsis assembler 203

A4.3. Conventions on passing parameters to functions

The mechanism of function call and the return from functions, used by the virtual processor, will be
explained on the following example.

int z;

main () {
 int x, y;
 z = test (x, y);
}

test (int i, int j) {
 int k;
 k = i + j;
 return (k);
}

This code would be compiled as follows (comments in the code are added):

_main:
 link.l %b0, 4 // allocating 16 bytes of local space
 movq.l %d8, %v0 // placing variable i (%v0) into the first
 // available register after the accumulator (%d0 to %d7)
 movq.l %d12, %v4 // placing variable j into the next one
 jsr %d8, _test_ii //call of func. test (the name is completed)
 movq.l %_z, %d0 // result returned via %d0
L0:
 unlk %b0 // freeing local space
 rts // end of function

_test_ii:
 link.b %b0, 4 // allocating 4 bytes of local space
 add.l %f0, %f4 // adding of formal variables i and j
 movq.l %v0, %d0 // storing the result into the variable k
 movq.l %d0, %v0 // return of the result
 jp L0 // compulsory jump to the output label (to
 // free the space allocated using link
L0:
 unlk %b0 // freeing local space
 rts // end of function

The arguments are passed in the following manner - they are lined up continually into the register %dn,
starting from the first free position (the lowest position is %d8, since the accumulator occupies the first 8 bytes).
Instruction link allocates space for all local variables and all interim results that were on locations %d8+n. In our
example function main has two local variables of type int (2x4 bytes) and uses two positions of a register %d to
pass arguments (2x4 bytes, totalling 16 - since we used long variant of instruction link, this number is divided by
sizeof(long)). Function test allocates space only for its local variable k. The result of the function is
returned through the accumulator (from %d0 to %d7). After that, the program jumps to label L0 where it frees
local space, and exits from the function. The results larger than 8 bytes return to address %f0 (address of formal
parameters), using instruction movm.

The previous example can be realized using combined AleC++/assembler syntax:

int z;

204 Alecsis 2.3 - User’s manual

main () {
 int x, y;
 asm {
 movq.l %d8, x
 movq.l %d12, y
 jsr %d8, %_test_ii
 movq.l z, %d0
 }
}

test (int i, int j) {
 int k;
 asm {
 add.l i, j
 movq.l k, %d0
 }
 return (k);
}

This example leaves instructions link and inlk to the compiler (this is a standard procedure when using
asm command). This applies in both cases to command return, too

In pointer arithmetic, you should be careful when dealing with address registers. Register %a0 is reserved
for vector indexing. Therefore, the code:

int i,j, a[10], b;
b = a[i+j];

compiles to

add.l i, j
addr.l a, %d0
movq.l b, (%a0)

which means that the instruction addr puts the address &a + sizeof(long)*(i+j) into the address
register %a0. The following instruction copies the content of that address in the register into variable b.

Parentheses can dereference only address registers. To dereference a pointer, you need to transfer it into
an address register:

int *i, j[10];
j[2] = *i;

This code is equivalent to the following code:

addr.l j, 2
movq.l %a4, i
movq.l (%a0), (%a4)

Note that pointer occupy 4 bytes, so the first free place was %a4, after %a0 had been used.

Instruction lea does the referencing:

int i, j;
j = &i;

lea %d0, i

Appendix 4. Alecsis assembler 205

movq.l j, %d0

Compiler implements referencing in two steps, but it is the standard procedure for the optimizer to merge
two steps into one: lea j, i.

Built-in functions are called using command jfn, and they cannot be mixed with ordinary functions, since
their address cannot be obtained. The first operand is the address of the first argument, while the second one is an
integer constant used for indexing. Indexes of all intrinsic functions, that are not instructions, are in the file asm.h
in directory alecsis/include. The following is the content of the file.

#define _printf 0
#define _fprintf 1
#define _sprintf 2
#define _fflush 3
#define _fopen 4
#define _fclose 5
#define _feof 6
#define _fseek 7
#define _ftell 8
#define _fread 9
#define _fwrite 10
#define _rewind 11
#define _exit 12
#define _system 13
#define _warning 16
#define _drand 17
#define _get_info 21
#define _atof 27
#define _atoi 28

The missing indices are used for internal system functions, which only compiler can call. By appending this
library you can write:

movq.l %d8, "Hello, world!\n"
jfn %d8, _printf

which has the same effect as AleC++ command:

printf("Hello, world!\n").

You can find all other details linked with using assembler by compiling the source code using option '-S'
and by direct comparison of source and compiled code. Notice that you cannot use directly the code obtained in this
manner. Assembler instructions need to be inside asm command for compiler to accept them. The closing example
will be a recursive function for calculating the factorial of 170 in double precision:

#include <alec.h>

double factor (double i){
 if (i<=1) return 1.0;
 return i * factor (i-1.);
}

int main() {
 double i=170.;
 printf("\tfactor(%g)=%g\n", i, factor (i));
}

//

206 Alecsis 2.3 - User’s manual

// Alecsis assembler code
//
// optimization off
//

// function factor_d

_factor_d:
 link.b %b0, 8
 le.d %f0, 1
 movq.l %d0, %d0
 jz L1
 movq.d %d0, 1
 jp L0
L1:
 sub.d %f0, 1
 movq.d %v0, %d0
 jsr %v0, _factor_d
 mul.d %f0, %d0
 movq.d %d0, %d0
 jp L0
L0:
 unlk %b0
 rts

//function main

_main:
 link.b %b0, 28
 movq.d %v0, 170
 movq.l %v8, "\tfactor(%g)=%g\n"
 movq.d %v12, %v0
 movq.d %v20, %v0
 jsr %v20, _factor_d
 movq.d %v20, %d0
 jfn %v8, 0
L0:
 unlk %b0
 rts

