Appendix 5 Model card parameters for built-in components

In this Appendix, names and default values of model card parameters are given for built-in analogue components. These are SPICE models of diode, MOSFET, BJT, and JFET. In SPICE manuals more detailed explanations of these models and model card parameters can be found. Nevertheless, there are different versions of SPICE, and we hope this list of model card parameters can be useful to determine which version of SPICE model is implemented in Alecsis.

If you need some version of the model that is not built into Alecsis, you have to define new model in AleC++.

Note: In the parameter tables, some of the parameters are dummy, i.e. they have no meaning. They are given here for completeness, as memory is allocated for them (as in SPICE). Some of them are used for results of parameters preprocessing.

A5.1. Diode model card parameters

SPICE 2G6 diode model is built into Alecsis.

Physical units are not given in the following table. We will give these units in new versions of this Manual.

name	default	unit	meaning
		-	dummy, not used
is	1e-14		saturation current
rs	0.0		parasitic resistance
n	1.0		emission coefficient
tt	0.0		transit time
cjo	0.0		zero-bias p-n capacitance
vj	1.0		p-n potential
m	0.5		p-n grading coefficient
eg	1.11		bandgap voltage
xti	3.0		IS temperature coefficient
kf	0.0		flicker noise coefficient
af	1.0		flicker noise exponent
fc	0.5		forward-bias depletion capacitance coefficient
bv	0.0		reverse breakdown "knee" voltage
ibv	1e-3		reverse breakdown "knee" current
Following p	parameters are read	from the mod	lel card, but are not used in the current version of the model:
isr	-		recombination current parameter
nr	-		emission coefficient for ISR
ikf	-		high-injection "knee" current
nbv	-		reverse breakdown ideality factor
ibvl	-		low-level reverse breakdown "knee" current
nbvl	-		low-level reverse breakdown ideality factor
tikf	-		IKF temperature coefficient (linear)
tbv1	-		BV temperature coefficient (linear)
tbv2	-		BV temperature coefficient (quadratic)
trs1	-		RS temperature coefficient (linear)
trs2	-		RS temperature coefficient (quadratic)

Table A5.1.Diode model card parameters in Alecsis.

A5.2. MOSFET model card parameters

Alecsis has four versions (levels) of MOS models. These are level 1, level 2, level 3 and level 13 models. The first three are standard SPICE models. Fourth model is BSIM model (Berkeley Short-Channel IGFET Model), which is denoted as level 13 in HSPICE.

A5.2.1. MOSFET level 1, 2 and 3 parameters

SPICE 2G6 MOSFET level 1, 2, and 3 models are built into Alecsis.

Parameter explanations are not given in the following table. We will give these explanations in new versions of this Manual.

Table A5.2.MOSFET level 1, 2, and 3 model card parameters in Alecsis.

name	default	unit	meaning
level	1	-	
gamma	-	V ^{1/2}	
nss	-	$1/cm^2$	
nsub	1.0e15	$1/cm^3$	
phi	-	V	
tpg	1.0	-	
vto	-	V	
af	1.0	-	
kf	-	-	
rd	-	Ω	
rs	-	Ω	
rsh	-	Ω /square	
cqso	-	F/m	
cqdo	-	F/m	
cqbo	_	F/m	
tox	1.0e-7	m	
cj	-	F/m ²	
cjsw	-	F/m	
mj	0.5	-	
mjsw	0.33	-	
pb	0.8	V	
fc	0.5	-	
ld	-	m	
kp	-	A/V^2	
lambda	-	1/V	
delta	-	-	
neff	1.0	-	
nfs	-	$1/cm^2$	
ucrit	1.0e4	V/cm	
uexp	-	-	
uo	600.0	$cm^2/(Vs)$	
vmax	-	m/s	
xj	-	m	
is	1.0e-14	A	
js	-	A/m ²	
kappa	0.2	-	
theta	-	1/V	
COX	-	F/m ²	
eta	-	-	
vbi	-	V	
xqc	-	-	
xd	-	-	For use of macromodels.
fnarrow	-	-	4
vt	-	-	4
xd2	-	-	

Following parameters are read from the model card, but are not used in the current version of the model:			
rg	-	Ω	
rb	-	Ω	
rds	-	Ω	
jssw	-	A/m	
n	-	_	
pbsw	-	V	
cbd	-	F	
cbs	-	F	
tt	-	S	
wd	-	m	
utra	-	-	
The following two parameters are used, if they are not given when MOS transistor is invoked (connected):			
1	0.0	m	channel length
w	0.0	m	channel width

A5.2.2. BSIM parameters (level 13)

HSPICE MOSFET level 13 model is built into Alecsis.

Table A5.3. MOSFET level 13 model card parameters in Alecs	sis.
--	------

name	default	unit	meaning
level		-	mosfet model level selector, 13 for HSPICE BSIM
vfb0	-1.0641	V	flatband voltage and its length and width sensitivities
lvfb	1.71979e-1	V µm	
wvfb	1.11454e-1	V µm	
phi0	7.95392e-1	V	two times the Fermi potential, its length and width
lphi	0.0	V µm	sensitivities
wphi	0.0	V µm	
k1	1.10425	$V^{1/2}$	root-vbs threshold coefficient, its length and width
lk1	-4.3371e-1	$V^{1/2} \mu m$	sensitivities
wk1	-9.8518e-2	$V^{1/2} \mu m$	
k2	1.93126e-1	-	linear vbs threshold coefficient, its length and width
lk2	4.14269e-4	μm	sensitivities
wk2	-6.0274e-2	μm	
eta0	-4.7124e-3	-	linear vds threshold coefficient, its length and width
leta	-1.0565e-2	μm	sensitivities
weta	1.08645e-2	μm	
muz	6.00853e2	$cm^2/(Vs)$	low drain field first order mobility
dl0	6.2438e-1	μm	difference between drawn poly and electrical
dw0	1.0384	μm	difference between drawn diffusion and electrical
u00	5.11222e-2	1/V	gate field mobility reduction factor, its length and width
lu0	1.73108e-1	(1/V) μm	sensitivities
wu0	-5.9804e-2	(1/V) μm	
u1	-2.3954e-1	μm/V	drain field mobility reduction factor, its length and width
lu1	2.91101	(μm/V) μm	sensitivities
wu1	-5.3638e-2	(μm/V) μm	
x2m	4.66158	$(cm/V)^2/s$	vbs correction to low field first order mobility, its length and
lx2m	-8.0305	$((cm/V)^2/s) \mu m$	width sensitivities
wx2m	5.54267	$((cm/V)^2/s) \mu m$	

x2e	-9.142e-4	1/V	vbs correction to linear vds threshold coefficient, its length
lx2e	1.23113e-2	(1/V) μm	and width sensitivities
wx2e	2.4326e-3	(1/V) μm	
x3e	1.05704e-4	1/V	vds correction to linear vds threshold coefficient, its length
lx3e	1.04115e-2	(1/V) μm	and width sensitivities
wx3e	-2.5834e-3	(1/V) μm	
x2u0	2.68363e-4	$1/V^2$	vbs reduction to gate field mobil. reduction factor, its length
lx2u0	-1.5668e-3	$(1/V^2) \mu m$	and width sensitivities
wx2u0	-8.5052e-4	$(1/V^2) \mu m$	
x2u1	-7.2567e-2	μ m/V ²	vbs reduction to drain field mobil. reduction factor, its
lx2u1	1.10182e-1	$(\mu m/V^2) \mu m$	length and width sensitivities
wx2u1	5.66859e-2	$(\mu m/V^2) \mu m$	
mus	5.49834e2	$cm^2/(Vs)$	high drain field mobility, its length and width sensitivities
lms	1.77273e3	$cm^2/(Vs) \mu m$	
wms	-9.0196e1	$cm^2/(Vs) \mu m$	
x2ms	-1.6724e1	$(cm/V)^2/s$	vbs reduction to high drain field mobility, its length and
lx2ms	8.98504	$((cm/V)^2/s) \mu m$	width sensitivities
wx2ms	2.8234e1	$((cm/V)^2/s) \mu m$	
x3ms	4.86164	$(cm/V)^2/s$	vds reduction to high drain field mobility, its length and
lx3ms	1.56629e1	$((cm/V)^2/s) \mu m$	width sensitivities
wx3ms	-6.57	$((cm/V)^2/s)$ µm	
x3u1	7.76925e-3	um/V^2	vds reduction to drain field mobility reduction factor, its
lx3u1	-1.094e-1	$(\mu m/V^2) \mu m$	length and width sensitivities
wx3u1	-8.3353e-3	$(\mu m/V^2) \mu m$	
toxm	2.5e-2	um	gate oxide thickness
tempm	25.0	°C	reference temperature of model
vddm	5.0	V	critical voltage for high drain field mobility reduction
cadom	1.5e-9	F/m	gate to drain parasitic capacitance: f/m of width
casom	1.5e-9	F/m	gate to source parasitic capacitance: f/m of width
capom	2.0e-10	F/m	gate to bulk parasitic capacitance: f/m of length
xpart	1.0	-	selector for gate capacitance charge sharing coefficient
dum1	0.0	-	dummy, not used
dum2	0.0	-	dummy, not used
n0	1.5	-	low field weak inversion gate drive coefficient, - -, value of
ln0	0.0	μm	200 for n0 disables weak inversion calculation
wn0	0.0	um	
nb0	0.1	1/V	vbs reduction to low field weak inversion gate drive
lnb	0.0	(1/V) um	coefficient., its length and width sensitivities
wnb	0.0	(1/V) um	
nd0	0.0	1/V	vds reduction to low field weak inversion gate drive
lnd	0.0	(1/V) µm	coefficient., its length and width sensitivities
wnd	0.0	(1/V) µm	
rshm	50.0	Q/square	sheet resistance / square
cim	4.5e-5	F/m^2	zero-bias bulk junction bottom capacitance
ciw	0.0	F/m	zero-bias bulk junction sidewall capacitance
ijs	1.0e-4	A/m ²	bulk junction saturation current
ia	0.8	V	bulk junction bottom potential
wiq	0.6	V	bulk junction sidewall potential
mjO	0.5	-	bulk junction bottom grading coefficient
mjw	0.33	-	bulk junction sidewall grading coefficient
wdf	2.0e-6	m	default width of the layer
ds	0.5	m	average variation of size due to side etching or mask
			compensation

A5.3. BJT model card parameters

SPICE 2G6 bipolar junction transistor (BJT) model is built into Alecsis.

Table A5.4.BJT model card parameters in Alecsis.

name	default	unit	meaning
		-	dummy, not used
is	1.0e-16	А	saturation current
bf	100.	-	ideal maximum forward current gain
nf	1.	-	forward current emission coefficient
vaf	0. (means ∞)	V	forward early voltage
ikf	0. (means ∞)	А	corner for forward beta high-current roll-off
ise	0.	А	base-emitter leakage saturation current
ne	1.5	-	base-emitter leakage emission coefficient
br	1.	-	ideal maximum reverse current gain
nr	1.	-	reverse current emission coefficient
var	0. (means ∞)	V	reverse early voltage
ikr	0. (means ∞)	А	corner for reverse beta high-current roll-off
isc	0.	А	base-collector leakage saturation current
nc	2.	-	base-collector leakage emission coefficient
		-	dummy, not used
		-	dummy, not used
rb	0.	Ω	zero bias base resistance
irb	0. (means ∞)	А	current where base resistance falls halfway to its minimum value
rbm	0. (means rb)	Ω	minimum base resistance at high currents
re	0.	Ω	emitter resistance
rc	0.	Ω	collector resistance
cje	0.	F	zero-bias base-emitter depletion capacitance
vje	0.75	V	base-emitter built-in potential
mje	0.33	-	base-emitter junction grading coefficient
tf	0.	S	ideal forward transit time
xtf	0.	-	coefficient for bias dependence of tf
vtf	0. (means ∞)	V	voltage describing vbc depencence of tf
itf	0.	А	high-current parameter for effect on tf
ptf	0.	0	excess phase at $f=1/(2*\pi*tf)$
cjc	0.	F	zero-bias base-collector depletion capacitance
vjc	0.75	V	base-collector built-in potential
mjc	0.33	-	base-collector junction grading coefficient
xcjc	1.	-	fraction of base-collector depletion
	0	-	capacitance connected to internal base node
	0.	S	dummy, not used
		-	dummy, not used
		-	dummy, not used
		-	dummy, not used
aia	0	- F	zero bios collector substrate conocitance
ບ່ອ	0.75	V	substrate-junction built-in potential
vjs mig	0.75	v	substrate junction exponential factor
xth	0	-	forward and reverse beta temperature coefficient
ea	1 11	eV	energy gan for temperature effect on is
xti	3	-	saturation current temperature exponent
kf	0	-	flicker noise coefficient
17.17	· ·		mener nonse coefficient

af	1.	-	flicker noise exponent
fc	0.5	-	coefficient for forward-bias depletion
Following	parameters are read	from the mod	lel card, but are not used in the current version of the model:
nk		-	high-current roll-off coefficient
iss		А	substrate p-n saturation current
ns		-	substrate p-n emission coefficient
qco		С	epitaxial region charge factor
rco		Ω	epitaxial region resistance
vo		V	carrier mobility "knee" voltage
gamma		-	epitaxial region doping factor
trel		1/°C	RE temperature coefficient(linear)
tre2		$1/(^{\circ}C)^{2}$	RE temperature coefficient(quadratic)
tbr1		1/°C	RB temperature coefficient(linear)
tbr2		$1/(°C)^2$	RB temperature coefficient(quadratic)
trm1		1/°C	RBM temperature coefficient(linear)
trm2		$1/(^{\circ}C)^{2}$	RBM temperature coefficient(quadratic)
trc1		1/°C	RC temperature coefficient(linear)
trc2		$1/(^{\circ}C)^{2}$	RC temperature coefficient(quadratic)

A5.4. JFET model card parameters

SPICE JFET model is built into Alecsis.

Physical units and parameter explanations are not given in the following table for most of the parameters. We will give these units and explanations in new versions of this Manual.

Table A5.5.JFET model card parameters in Alecsis.

name	default	unit	meaning
		-	dummy, not used
vto	-2.0		
beta	1e-4		
lambda	0.0		
rd	0.0		
rs	0.0		
cgs	0.0		
cgd	0.0		
pb	1.0		
is	1e-14		
kf	0.0		
af	1.0		
fc	0.5		
		-	dummy, not used
		-	dummy, not used
		-	dummy, not used

	-	dummy, not used			
Following pa	Following parameters are read from the model card, but are not used in the current version of the model:				
	-	dummy, not used			
	-	dummy, not used			
	-	dummy, not used			
n		gate p-n emission coefficient			
isr		gate p-n recombination current parameter			
nr		emission coefficient for ISR			
alpha		ionization coefficient			
vk		ionization "knee" voltage			
m		gate p-n grading coefficient			
vtotc		VTO temperature coefficient			
betatce		BETA exponential temperature coefficient			
xti		IS temperature coefficient			