
Alecsis Manual
Version 2.4

Release Note 1

software version 2.4.1
june 1998

Laboratory for Electronic Design Automation
University of Niš, Faculty of Electronic Engineering

Beogradska 14, 18000 Niš, Yugoslavia

 2/1998

Alecsis Manual
Version 2.4

Release Note 1

software version 2.4.1
june 1998

Vladimir Risojević
Željko Mr~arica

Michel Lenczner*

Laboratory for Electronic Design Automation
University of Ni{, Faculty of Electronic Engineering

Beogradska 14, 18000 Niš, Yugoslavia
http://leda.elfak.ni.ac.yu/

*Laboratoire de Calcul Scientifique

Groupe Materiaux Intelligents
16 Route de Gray, 25000 Besançon

Note:

Introduction of new system of equations solver is explained in this release note. This solver
is intended for very large matrices. It enables solution of the matrix block by block, where block
which are not currently used are temporarily stored on disk. The matrix must be organized in
block for this method to be effective. This is actually intended for simulation of micromechanical
problems.

Three sections of the original Manual are given here. Section 5.6.3.3. replaces old
version,; section A1.2.1. replaces part of the old version (section is long, so unchaned parts are
not repeated here); and section A1.3. replaces old version.

5.6.3.3. Control of system of equations solver

(new version of the section)

Table 5.4. Control of sparse matrix solver.

Name Default value Meaning

renum Best (2) Sparse matrix renumeration algorithm. It can be
None (0), Fast (1), Best (2), or Frontal (3).

pivot_threshold 0 Used if renum equals Frontal. This parameter is
used by the frontal LU solver during the pivoting. It

can be between 0 and 1.

buffersize 0 Used if renum equals Frontal. Size of the buffers
where coefficients and its indices obtained during the
frontal LU decomposition are stored before they are

written to temporary files.

Sparse matrix solver can be controlled by means of the option renum. This option offers
the possibility of choosing between standard, column-oriented, sparse matrix storing scheme
(when renum is either None, Fast, or Best), and frontal scheme (renum is Frontal)
which is appropriate for matrices arising from finite element method applications, and very
closely related to the LU decomposition itself. Furthermore, by its value an algorithm for
reordering of matrix rows and columns is specified. In detail, the number of nonzero elements in
the system matrix generated during LU decomposition, and consequently memory space needed
for storing calculated coefficients, depends on the ordering of matrix rows and columns. This
choice can also affect the CPU time necessary for simulation. When frontal LU decomposition is
chosen the parameters pivot_threshold and buffersize are used, otherwise their value is
ignored.

In the case of choosing column-oriented sparse matrix storing scheme reordering is
performed only once, at the beginning of simulation. If you chose option Best, a variant of
Berry's algorithm is used, when very detailed (and slow) reordering is performed. This is the
default value, as reordering is performed only once, and good reordering guaranties fast
simulation. With option Fast, a variant of Markowitz's algorithm is used, when reordering is
performed much faster, with somewhat slower simulation in time domain afterwards. This option
should be chosen for very large matrices (several hundreds of equations or more), since with
Berry's algorithm, reordering can take more CPU time than time-domain simulation. When
option None is chosen, no reordering is performed. This is implemented for comparison only, it
has no practical effect, since simulation can take too much time.

If option Frontal is chosen, a system matrix is decomposed using the frontal technique,
first devised by Irons. This technique is originally developed for solving large positive-definite,
symmetric sparse systems of equations such as occur in finite element method applicatons. Duff

extended frontal technique for solving arbitrary large sparse systems of equations, and, a variant
of Duff's algorithm is implemented here. Option Frontal decomposes matrix in blocks, and can
swap currently unused blocks to disk. This enables very large matrices to be solved, that cannot
be held in computer memory as a whole. However, if the matrix cannot be organized in blocks,
i.e. if there are many nonzero entries far away from the main diagonal, this method cannot be
efficient, as blocks cannot be identified.

The basic idea of this algorithm is the fact that a system matrix is formed by performing
subsequent assemblies of elemental matrices (stamps). It is obvious that there is an elemental
matrix after whose assembly there are no further contributions to some row and column. We say
that the variable corresponding to that row and column is fully summed, and can be eliminated if
some numerical stability criterion is satisfied. After the elimination is done that row and column
are removed from the matrix and the obtained factors are written to disk. In this way, the
complete system matrix is never held in the main memory. Instead, all operations are performed
in a matrix, called frontal matrix, whose rows and columns correspond to variables that have not
yet been eliminated but occur in at least one of the elements that have been assembled. Here, the
process of LU decomposition is interleaved with the assembly of system matrix, so this
technique permits solving of large sparse systems of equations.

The above mentioned numerical stability criterion depends on the value of the parameter
pivot_threshold. If its value is 0 (default) then the only constraint on the pivot value is that
it must not be zero. This helps in avoid zero pivots that can arise from electrical elements like
ideal voltage generators and inductors. However, it is usually important to have larger pivots, as
the numerical error is smaller in such case.If the value of pivot_threshold is different from
zero then the pivot is choosen using the following threshold pivoting criterion: alk is good pivot
if

alk
i

ik≥ ⋅pivot_ threshold max a (5.14)

is satisfied. Note that pivot_threshold=1.0 corresponds to partial pivoting.

The factors obtained during the elimination are not immediately written to disk. They are
first put to buffers in the main memory and only when some buffer is full, its contents is flushed
to disk. There are three buffers, two for factors (L and U matrices), and one for their row and
column indices. Obviously, if the buffers are large enough it is possible to avoid the usage of
disk, or at least reduce it, because it slows down the simulation. The size of the buffers can be
specified by setting the value of parameter buffersize. It is the size of each of the three
buffers. Default value is zero meaning that there is no buffering.

Note: The order of assembly of the elemental matrices determines the order of elimination,
and therefore the memory space needed for LU decomposition, so as the simulation time. One
may conclude that frontal method is not appropriate for arbitrary, large sparse matrices, but only
for those with particular sparsity patterns. Block diagonal matrices represent a class of matrices
on which frontal method is applicable, and they often occur in finite element problems. In
general, it is desirable that the order of the frontal matrix is as small as possible. This can be
achieved by means of the element reordering. Finite element codes usually yield the sequence of
elements which meets this requirement.

Note: Values of parameter renum - None, Fast, Best and Frontal are actually integer
values, defined in standard Alecsis header file alec.h. In that file, it is defined:

#define None 0

#define Fast 1

#define Best 2

#define Frontal 3

Therefore, to use textual values of parameter renum, you should have file alec.h file
included before your root module definition, using command:

include <alec.h>

A1.2.1. Program call from the command line -- command options

(section update)

-vverbose_level Gives more information about the simulation run. There are following
options:

-v1 tracks symbol table activity;
-v2 tracks intermediate code generation (operand types etc.);
-v3 all LEX tokens are printed out as they arrive;
-v4 follows voltage generator/inductor loops detection;
-v5 prints instructions as they are flushed;
-v6 tracks overloading and prototype mangling;
-v7 prints list of nodes;
-v8 follows the use of weights if option dcon is used;
-v9 follows the process of static/global initialization;
-v10 follows library management;
-v11 follows function declaration;
-v12 clear global symbol table before simulation;
-v13 tracks function prototype existence;
-v15 tracks class member access control;
-v16 follows function inline expansion;
-v31 prints system matrix and right-hand side vector in every iteration, as without

reordering. It has no effect if option renum equals Frontal;
-v32 prints system matrix and rhs vector in every iteration as reordered. It has no

effect if option renum equals Frontal;
-v33 prints both non-reordered and reordered system matrix and rhs vector,

respectively, in every iteration. It has no effect if option renum equals
Frontal;

-v34 prints statistics if option renum equals Frontal, otherwise has no effect, viz.
 1. system size,
 2. frontal matrix size,
 3. fully summed variables block size,
 4. number of non-zero entries in the original matrix,
 5. number of factors in both L and U matrices,
 6. number of indices stored for bookkeeping purposes.
-v55 turns on full logic initialization
-v99 changes all calls of exit() with abort() to dump core file

Note: Verbose level 55 (full logic initialization) is rather a simulation option than a
verbose level, and it will be organized as such in following versions of Alecsis.

Most of these verbose levels are of interest only for us that created Alecsis, for our
debugging purposes. However, there are some of them that can be very useful for Alecsis users.
For instance, verbose level 8 follows use of weight when option dcon for difficult
convergence problems is used. This can be very useful for setting correct values for options
max_weight, min_weight, p, q, and maxdcon, if you are not satisfied with their default
values (see Chapter 5, section on simulation options for details).

Verbose level 31 prints out system matrix, which can sometimes be helpful if you have
problems with zero pivot (singular matrix). This is, however, useful only for small matrices, as it
is very difficult to analyze large matrices.

Note: If more than one verbose_level is given, only the last one will take effect. For
example:

alec -v1 -v2 file_name
has the same effect as:

alec -v2 file_name

A1.3. Overview of Alecsis versions

(new version of the section)

We use notation of Alecsis versions with tree numbers. First number denotes crucial
change of Alecsis/AleC++ functionality. The second one denotes change of functionality (new
feature) from the user point of view. The last number is denotes improvement (usually
debugging) of existing functions.

Alecsis 1.x input language based on C, no object-orientation;

Alecsis 2.1.1. - 2.1.50 object-oriented input language AleC++ is introduced;

Alecsis 2.2.1. - 2.2.33. operator d2dt2 is introduced;

Alecsis 2.3.1. - 2.3.38 through and across eqn statements are introduced;

Alecsis 2.4.1. - 2.4.x new frontal method for LU decomposition of large sparse
matrices is introduced.

