
 68

DIGITAL SYSTEMS FOR SQUARE ROOT COMPUTATION
Borisav Jovanović, Milunka Damnjanović, Faculty of Electronic Engineering Niš

Nagrada za najbolji rad mladog istraživača na Komisiji

Abstract – Three algorithm implementations for square root
computation are considered in this paper. Newton-Raphson's,
iterative, and binary search algorithm implementations are
completely designed, verified and compared. The algorithms,
entire systems realisation and their functioning is described.

1. INTRODUCTION

Digital systems for square root computation and division
are still a challenge for IC designers. There are many
algorithms and their implementations. A unit with 24-bit
input is considered here. Two optimization criteria were used:
chip area and speed. Therefore, the number of iterations for
square root computation should be minimal.

Attention has been paid to three types of square-rooters.
Each system is considered starting with mathematical proof
of the algorithm. After that, exact hardware implementation
has been developed. All systems were verified through the
VHDL simulations and synthesized by Cadence tools.

In the next, three considered algorithms and their
implementations will be described and analysed.

2. NEWTON-RAPHSON'S METHOD

Following Newton-Raphson's method (also known as
Heron's)[2], the square root value of number a is computed
through the iterative formula









+=+

k
kk x

axx
2
1

1 (1)

Digital system of this formula implementation is shown
on Fig. 1.

Fig.1. Block diagram of digital system for square-rooting

based on Newton-Raphson’s method

It is built of few subsystems: 24-bit register U2 used for
storing the number that square-root should be computed for;
13-bit register U1 in which temporary solution for square root
is stored; subsystem U8 for the division implementation;
subsystem U5 for initial solution-value computing; adder U3

containing 13 full adders; counter_2 that counts started
divisions; sequencer U6 that has the control over subsystems.
The system ports are: signal clk for clock; start_root for
beginning of computation; end_root for the indication of the
operation completion, bus a(23:0) for getting the input
number a; bus root(12:0) for output data.

How does the entire system function? At the beginning,
number a, the dividend, is stored in register U2. Unit for
initial value computation, U5, gets the value a from register
U2 and after time delay it produces initial solution x0. After
completion of generating x0, this value is available on the
output of register U1 as divisor. Subsystem for dividing
divides values stored in registers U2 and U1, and quotient is
added to the value stored in register U1 and shifted right.
After these operations, new solution x1 is stored in register
U1. Only one additional dividing operation is needed to reach
the final value of square root, because the initial value x0 is
computed on appropriate way, instead assumed as the
arbitrary value. In second dividing operation, x1 is divisor.
Quotient is added to x1, shifted right and stored in register
U1. This final result can be read on bus root(12:0).

Further, the attention will be paid on subsystems
implementing the parts of square-rooter.

The computation of the initial value x0 of square root is
done with the subsystem shown in Fig.2.

Fig.2. Block diagram of digital subsystem for initial square-

root-solution generation

Its inputs are: clk for clock, start_gen for operation start,
end_gen for signaling if unit finished its operation, 24-bit
input bus a(23:0) and output bus x0(12:0). It consists of one
shift register U1, counter U0 and few simple logical gates.
Input number a (for which the square root should be
computed) is stored in 24 least significant bits of 25-bit
register U1. At the start of computation, the number of
significant digits of the input number is unknown and
therefore it should be computed first: counter U0 counts the
number of zeros before the most significant 1 in the input
number a.

After that, number a is stored again in register U1. The
number of digits in initial solution is twice less than the
number of input digits and it is stored in counter. Register U1
starts shifting to the right and counter starts decrementing its

Zbornik radova XLVII Konf za ETRAN, Herceg Novi, 8-13 juna 2003, tom I
Proc. XLVII ETRAN Conference, Herceg Novi, June 8-13, 2003, Vol. I

 69

value. When the counter reaches zero state, shifting is
stopped and the value remained in U1 is initial solution for
square root.

The number of necessary clock iterations for initial value
generation Ngen is:





 −

−=
2

125 KN gen (2)

where K is the number of significant bits of input a. Ngen is in
the range from 25, for computing square root of 1, to 14, for
computing square root of (FFFFFF)16.

The division unit implements the manual or Longhand
division algorithm [4]. Its structure is shown in Fig.3.

Fig.3. Block diagram of division implementation subsystem

Dividend is 24-bit number, divisor is 13-bit number and
quotient is 13-bit number. At the beginning of dividing
procedure, RegisterB (initially storing divisor) is shifted to
the left until its value becomes greater then value stored in
RegisterA (dividend). The 5-bit counter counts the number of
shifts. Then, counter starts counting down, and the procedure
of quotient-digits computing follow. RegisterA is shifted left
for one bit. Further, RegisterA changes its value, but
RegisterB is keeping its value. The dividing procedure is
performed through the successive subtractions (RegisterA -
RegisterB). Each time the result is negative, the value
RegisterA is shifted left for one position and zero is appended
to RegisterC value on least significant position. Else, result of
subtraction, shifted left for one position, is stored in
RegisterA and digit 1 is appended to RegistarC. Since the
number of quotient digits is equal to the number of shifts, the
division operation is finished when counter reaches zero. The
number of clock cycles needed for dividing is two times
greater then number of significant digits of the quotient.

The total number of clock periods (for initial value
generation, two divide iterations, entering data in registers
and control signals production) is in range from 40, for
computing square root of 1, to 72, for computing square root
of (FFFFFF)16.

System is described in VHDL and synthesized by
Cadence PKS and Simplicity. Placement and routing are
performed in Silicon Ensemble.

3. ITERATIVE ALGORITHM

Next, an old, traditional method for square root
computation will be considered. It is known as Iterative
method or Longhand square root computation method [3],[4].

Obtained results confirm the idea that traditional methods are
usually the best ones. The algorithm is very fast and its
hardware implementation has small chip area. The algorithm
computes square root on the same way like people do
manually:

It starts with grouping the digits in pairs, starting from
the decimal point. The first digit of result is the greatest digit
(e.g. bm) whose square is less than the first group value. The
positive remainder after square of bm has been subtracted
from the first group value, should be concatenated with next
pair of digits and treated integral (e.g. value cm). Present
result is formed of found digits (at the beginning it is only bm)
Next digit (e.g. bm-1) in the resulting number, is the greatest
number that meets the condition

(20 * present_result + bm-1) * bm-1 ≤ cm (3)

The result of subtraction

cm - (20 * present_result + bm-1) * bm-1 (4)

should be concatenated with next pair of digits (like
previously) and treated integral (e.g. value cm-1) hereafter.
Present result is appended by new digit bm-1. The procedure is
repeated until all input groups of digits are considered.

Fig.4. Block diagram of square rooter based on iterative

algorithm

Computation is significantly simpler if it is performed in
radix 2. Like previous computation in radix 10, binary digits
of number which square root should be found are grouped in
pairs. In every iteration, two digits are appended to the right
side of the present result (digit 0 for multiplying by two and
digit 1 for possible digit of result). In radix 2 only digits 1
and 0 can be assumed for the next digit of result. Subtraction
is performed, and if minuend is grater then subtrahend, digit
1 is appended to present result. Result of subtraction,
concatenated with next pair of digits, form minuend for next
subtraction. Else, present result is concatenated with zero.
Minuend concatenated with next pair of digits forms minuend
for next iteration.

Schematic of digital system implementing iterative
algorithm is given in Fig.4. System ports are: clk for clock,
start_root for computation beginning, input 24-bit bus
a(23:0) for input data, output 11-bit bus root(11:0) for output
data, output signal end_root for indication that computation
is finished. It consists of 36-bit register Reg1, 12-bit register
Reg2, subtractor Subt1 that consists of 14 full adders and 14
inverters, 4-bit counter Counter_4 and few simple logic
gates.

At the beginning, 24 least significant bits of Reg1 get the
input value a. Other 12 most significant bits are set to zeros.
Reg2 also gets zero value. Minuend is made of 14 most

 70

significant bits of Reg1. Present result is stored in Reg2. At
the beginning of computation, present result is zero.
Subtrahend is made of present result and two binary digits,
zero or one, appended to the right side of present result. If
minuend is grater than subtrahend, present result is appended
by binary digit one. Difference is stored on minuend’s place,
in 14 higher bits of Reg1. After that, Reg1 is shifted left for
two positions. If minuend is smaller than subtrahend,
subtraction results are not stored. Reg1 is just shifted left for
two positions.

The algorithm is very fast. It uses only 12 iterations for
the square-root completion. Every iteration is completed
exactly in one clock period.

4. BINARY SEARCH ALGORITHM

This algorithm can be found solving many different tasks
in programming. Here, this algorithm is modified to speed up
root computation [6]. The computing procedure is simple:

The resulting square root value, e.g. am am-1 am-2 ... a1 a0,
has twice less number of bits comparing to input number,
12 bits in our case. The algorithm finds the value of square
root bit-by-bit. First, the most significant bit am, is assumed to
be 1 and other bits are zeros. Number 100...0 is squared and
subtracted from the input number. If the remainder is
positive, the assumed bit is correct. If not, the bit is 0. In the
next iteration, the next bit am-1 is assumed to be 1. Number
am100...0 is squared and subtracted from the input number
and the same considerations stand. The algorithm proceeds
until LSB is considered.

In order to speed up the algorithm, square computation is
modified: If the temporary square-root solution is number
A = amam-1am-2...ak0...0 (bits am,am-1,am-2,...,ak are computed
in previous iterations, others are still unknown and replaced
by zeros), guess is A'=amam-1am-2...ak10...0, i.e., assumed bit
on position k-1 is 1. The square of the guess is computed
using the square of temporary solution.

22221

21
1

2
1

2'

22)2(
)22...(

)0...10...(

−−

−
−

−

++=+=
+×=

=

kkk

kk
kmm

kmm

AAA
aaa

aaaA
 (5)

where A is the temporary solution. So, if square of temporary
solution is known, square computation of guess is reduced to
few shifting and addition operations. The algorithm is very
fast - it uses only 12 clock iterations for the square-root
completion, like previously described iterative algorithm.

Fig.6. Block diagram of square rooter based on binary

search algorithm

Schematic of digital system implementing binary search
algorithm is shown in Fig.6. The system ports are: clk port
for clock, signal start_root for computation beginning, input
24-bit bus b(23:0) for input data, output 12-bit bus root(11:0)
for output data, output signal end_root for indication that
computation has been finished. System is composed of:
registers Reg1, Reg2 and Reg3; subtractor Subt1, adders Add1
and Add2 composed only of logical OR gates; 4-bit
synchronous counter Counter_4 and few simple logical gates
in control logic. These parts function as follows.

Reg1 is 24-bit register that stores the difference of input
value b and square of temporary solution (A2). At the
beginning of computation, temporary solution is A=00..0 (all
binary numbers are unknown), so Reg1 is loaded with
number B.

Reg2 is also 24-bit register and stores value 2kA, i.e.,
temporary solution shifted for k places (k is the number of
unknown binary digits in temporary solution). At the start of
computation Reg2 is reset to all zeros.

Reg3 is 12-bit register that holds 2k-1. At the beginning k
is 12 and Reg3 stores hexadecimal value 800. It means that
12 bits are unknown. After every clock rising edge, number
of unknown digits is decremented and the value in Reg3 is
shifted right.

Subtractor Subt1, composed of 24 full adders and the
same number of inverters, gives the control signal sel on
carry_out output. If minuend is greater then subtrahend then
sel is 1 and difference should be loaded into Reg1. Else, sel is
0 and Reg1 retains its old value. Negative data should not be
stored.

Adders Add1 and Add2 are composed of logical OR
gates. They get values of Reg2 and Reg3 outputs on their
inputs. One of them provides subtrahend(23:0) on its output
bus:

subtrahend(23:0):=Reg2+(Reg3)2 =2kA+22k-2 (6)

The other provides the data input for Reg2:

Reg2:=Reg2>>1+(Reg3)2 =2k-1A+22k-2=2k-1(A+2k-1)=

=2k-1(am am-1 am-2 ... ak 10...0)= 2k-1A’ (7)

The >>1 denotes that Reg2 value is shifted one bit to the
right. There is no carry transition, so OR logical gates are
used instead of full adders, providing significant saving in
chip area. Number Reg2>>1 = 2kA>>1 has 2k-1 zeros at
least significant positions, while (Reg3)2=22k-2.

In every iteration, subtraction is performed. Subtrahend,
2kA+22k-2, is subtracted from minuend, Reg1 value (B-A2). If
minuend is greater than subtrahend, guess A’ is correct and
digit 1 is correctly assumed on bit position k-1. New
temporary solution get value from previous guess A’. New
values are stored in Reg1 and Reg2:

Reg1:=(B-A2)- 2kA+22k-2=B-(A+2k-1)2=B-A’2 (8)

Reg2:= 2k-1A’ (9)

If minuend is less than subtrahend, guess A’ is incorrect
and digit 1 is not correctly assumed on bit position k-1, i.e., 0
is the solution for bit position k-1. Temporary solution A
retains its value, so Reg1 value is the same as previous one.
Value in Reg2 is shifted right for one bit position:

Reg2:= (Reg2>>1)=(2kA>>1)=2k-1A (10)

 71

After 12 (m+1=12) clock iterations, Reg2 holds correct
value of square root which can be read on bus root(11:0)

2kA = 20A = A = am am-1 am-2 ... a1 a0 (11)

The implementation is verified in VHDL, and
synthesized in Cadence PKS logical synthesis tool. After that,
standard cell net list was put into program Silicon Ensemble
where placement and routing were performed.

5. RESULTS

Comparing the implementations independently of the
physical realisation, we can see that the implementation
based on Newton-Raphson’s method requires greater number
of clock periods (in range from 40 to 70 depending on input
data) than the other methods (exactly 12 clock cycles) for
completing the square root solution.

All systems are verified in VHDL and implemented in
same standard cell technology. So, the properties of the
resulting solutions can be regularly compared.

Namely, the first VHDL simulation was performed in
ActiveHDL tool. Logical synthesis is done in BuildGates
(part of Cadence). Alcatel 0.7µm CMOS standard cells
technology has been chosen. As a result, logical synthesis
produced standard cell net list that was brought to another
Cadence program, Silicon Ensemble, where placement and
routing were performed. Extracted signal propagation delay
values and standard cell net list were put back into simulator
NCsim where logical simulation was performed. Waveforms
derived from NCsim matched with ones from ActiveHDL.
Finally, layouts were verified by Design Rule Check analysis.
As an example, layout derived from Silicon Ensemble for the
iterative algorithm based square root implementation is
shown in Fig. 5.

Fig.5. Layout of digital system for square rooting made

following iterative method

Some properties of the considered implementations are
compared in Table 1. Maximal clock frequency is determined

Table 1.

 System type
Property

Newton-
Raphson's

Iterative Binary
Search

Chip area 0.5 mm2 0.3 mm2 0.4 mm2

Maximal
Clock-frequency 17 MHz 31 MHz 14 MHz

by maximal propagation delay in adders and subtractors. All
proposed systems have incorporated adders with serial carry
transition. If other types of adders were used, both occupied
chip area and maximal clock frequency would be greater.

6. CONCLUSION

Three square root implementations were designed and
their properties were compared. System implementation
based on iterative algorithm provides the solution with
smallest chip area and power consumption, and maximal
clock frequency.

All proposed solutions are very flexible and can be
modified if square root of a number with more or less than 24
bits is required, if it is required to find bits after decimal
point, etc. These demands can be accomplished by minor
changes in VHDL code.

It is worth to notice that Newton-Raphson's algorithm
based square root computation circuit has the advantage of
having built-in a division subsystem. So, it can be applied in
all circumstances where both are needed, integer division and
square root computation. In that case, significant saving in
chip area can be accomplished.

This work was supported in part by the Ministry of Science,
Technology and Development of Serbia, through the Project
IT.1.02.0076.A realized in Technology Development area.

REFERENCES

[1] M.Cornea-Hansen, B.Norin, “IA-64 Floating Point
Operations and IEEE Standards for Binary Floating
Point Arithmetic”, IEEE Trans. Automat. Control, vol.
AC-22, pp. 210-222, April 1977.

[2] M.Cornea-Hansen, R.Golliver “Correctness Proofs
Outline for Newton-Raphson Based Floating Point
Divide and Square Root”, New York: Wiley, 1975.

[3] M.Cornea-Hasegan, “Proving IEEE Correctness of
Iterative Floating-Point Square Root, Divide, and
Remainder Algorithms,” Intel Technology Journal,Q2,
1998 at
http://developer.intel.com/technology/itj/q21998.htm

[4] J.P.Grossman, “Roll Your Own Divide/Square Root
Unit”, June 24, 1999

[5] Majerski, S. “Square-Rooting Algorithms for High-
Speed Digital Circuits”, IEEE Transactions on
Computers, Vol. C-34, No. 8, August 1985, pp. 724-733

[6] P.Freire, “Square Root Algorithms” http://www.pedro
freire. com/sqrt

[7] K.C.Chang, “Digital Systems Design with VHDL and
Synthesis: An Integrated Approach”, IEEE Computer
Society, Los Alamitos, California 1999.

Sadržaj – U radu su razmotrene implementacije tri algoritma
za izračunavanje kvadratnog korena nekog broja. Impleme-
ntacije Newton-Raphson-ovog, iterativnog i algoritma kore-
novanja binarnim pretraživanjem su projektovane, verifiko-
vane i upoređene. Kompletno su opisani algoritmi, fizičke
realizacije sistema i njihovo funkcionisanje.

DIGITAL SYSTEMS FOR SQUARE ROOT
COMPUTATION

Borisav Jovanović, Milunka Damnjanović

