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Abstract – Three algorithm implementations for square root 
computation are considered in this paper. Newton-Raphson's, 
iterative, and binary search algorithm implementations are 
completely designed, verified and compared. The algorithms, 
entire systems realisation and their functioning is described. 
 
 
1.  INTRODUCTION 

Digital systems for square root computation and division 
are still a challenge for IC designers. There are many 
algorithms and their implementations. A unit with 24-bit 
input is considered here. Two optimization criteria were used: 
chip area and speed. Therefore, the number of iterations for 
square root computation should be minimal. 

Attention has been paid to three types of square-rooters. 
Each system is considered starting with mathematical proof 
of the algorithm. After that, exact hardware implementation 
has been developed. All systems were verified through the 
VHDL simulations and synthesized by Cadence tools. 

In the next, three considered algorithms and their 
implementations will be described and analysed. 

2.  NEWTON-RAPHSON'S METHOD  

Following Newton-Raphson's method (also known as 
Heron's)[2], the square root value of number a is computed 
through the iterative formula 
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Digital system of this formula implementation is shown 
on Fig. 1.  

 
Fig.1. Block diagram of digital system for square-rooting 

based on Newton-Raphson’s method 

It is built of few subsystems: 24-bit register U2 used for 
storing the number that square-root should be computed for; 
13-bit register U1 in which temporary solution for square root 
is stored; subsystem U8 for the division implementation; 
subsystem U5 for initial solution-value computing; adder U3 

containing 13 full adders; counter_2 that counts started 
divisions; sequencer U6 that has the control over subsystems. 
The system ports are: signal clk for clock; start_root for 
beginning of computation; end_root for the indication of the 
operation completion, bus a(23:0) for getting the input 
number a; bus root(12:0) for output data. 

How does the entire system function? At the beginning, 
number a, the dividend, is stored in register U2. Unit for 
initial value computation, U5, gets the value a from register 
U2 and after time delay it produces initial solution x0. After 
completion of generating x0, this value is available on the 
output of register U1 as divisor. Subsystem for dividing 
divides values stored in registers U2 and U1, and quotient is 
added to the value stored in register U1 and shifted right. 
After these operations, new solution x1 is stored in register 
U1. Only one additional dividing operation is needed to reach 
the final value of square root, because the initial value x0 is 
computed on appropriate way, instead assumed as the 
arbitrary value. In second dividing operation, x1 is divisor. 
Quotient is added to x1, shifted right and stored in register 
U1. This final result can be read on bus root(12:0). 

Further, the attention will be paid on subsystems 
implementing the parts of square-rooter. 

The computation of the initial value x0 of square root is 
done with the subsystem shown in Fig.2.  

 
Fig.2. Block diagram of digital subsystem for initial square-

root-solution generation 

Its inputs are: clk for clock, start_gen for operation start, 
end_gen for signaling if unit finished its operation, 24-bit 
input bus a(23:0) and output bus x0(12:0). It consists of one 
shift register U1, counter U0 and few simple logical gates. 
Input number a (for which the square root should be 
computed) is stored in 24 least significant bits of 25-bit 
register U1. At the start of computation, the number of 
significant digits of the input number is unknown and 
therefore it should be computed first: counter U0 counts the 
number of zeros before the most significant 1 in the input 
number a. 

After that, number a is stored again in register U1. The 
number of digits in initial solution is twice less than the 
number of input digits and it is stored in counter. Register U1 
starts shifting to the right and counter starts decrementing its 
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value. When the counter reaches zero state, shifting is 
stopped and the value remained in U1 is initial solution for 
square root. 

The number of necessary clock iterations for initial value 
generation Ngen is:  
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where K is the number of significant bits of input a. Ngen is in 
the range from 25, for computing square root of 1, to 14, for 
computing square root of (FFFFFF)16. 

The division unit implements the manual or Longhand 
division algorithm [4]. Its structure is shown in Fig.3.  

 
Fig.3. Block diagram of division implementation subsystem 

Dividend is 24-bit number, divisor is 13-bit number and 
quotient is 13-bit number. At the beginning of dividing 
procedure, RegisterB (initially storing divisor) is shifted to 
the left until its value becomes greater then value stored in 
RegisterA (dividend). The 5-bit counter counts the number of 
shifts. Then, counter starts counting down, and the procedure 
of quotient-digits computing follow. RegisterA is shifted left 
for one bit. Further, RegisterA changes its value, but 
RegisterB is keeping its value. The dividing procedure is 
performed through the successive subtractions (RegisterA - 
RegisterB). Each time the result is negative, the value 
RegisterA is shifted left for one position and zero is appended 
to RegisterC value on least significant position. Else, result of 
subtraction, shifted left for one position, is stored in 
RegisterA and digit 1 is appended to RegistarC. Since the 
number of quotient digits is equal to the number of shifts, the 
division operation is finished when counter reaches zero. The 
number of clock cycles needed for dividing is two times 
greater then number of significant digits of the quotient.  

The total number of clock periods (for initial value 
generation, two divide iterations, entering data in registers 
and control signals production) is in range from 40, for 
computing square root of 1, to 72, for computing square root 
of (FFFFFF)16. 

System is described in VHDL and synthesized by 
Cadence PKS and Simplicity. Placement and routing are 
performed in Silicon Ensemble. 

3.  ITERATIVE ALGORITHM 

Next, an old, traditional method for square root 
computation will be considered. It is known as Iterative 
method or Longhand square root computation method [3],[4]. 

Obtained results confirm the idea that traditional methods are 
usually the best ones. The algorithm is very fast and its 
hardware implementation has small chip area. The algorithm 
computes square root on the same way like people do 
manually: 

It starts with grouping the digits in pairs, starting from 
the decimal point. The first digit of result is the greatest digit 
(e.g. bm) whose square is less than the first group value. The 
positive remainder after square of bm has been subtracted 
from the first group value, should be concatenated with next 
pair of digits and treated integral (e.g. value cm). Present 
result is formed of found digits (at the beginning it is only bm) 
Next digit (e.g. bm-1) in the resulting number, is the greatest 
number that meets the condition 

(20 * present_result + bm-1 ) * bm-1 ≤ cm                       (3) 

The result of subtraction  

cm - (20 * present_result + bm-1 ) * bm-1                        (4)  

should be concatenated with next pair of digits (like 
previously) and treated integral (e.g. value cm-1) hereafter. 
Present result is appended by new digit bm-1. The procedure is 
repeated until all input groups of digits are considered.  

 
Fig.4. Block diagram of square rooter based on iterative 

algorithm 

Computation is significantly simpler if it is performed in 
radix 2. Like previous computation in radix 10, binary digits 
of number which square root should be found are grouped in 
pairs. In every iteration, two digits are appended to the right 
side of the present result (digit 0 for multiplying by two and 
digit 1 for possible digit of result). In radix 2 only digits 1 
and 0 can be assumed for the next digit of result. Subtraction 
is performed, and if minuend is grater then subtrahend, digit 
1 is appended to present result. Result of subtraction, 
concatenated with next pair of digits, form minuend for next 
subtraction. Else, present result is concatenated with zero. 
Minuend concatenated with next pair of digits forms minuend 
for next iteration.  

Schematic of digital system implementing iterative 
algorithm is given in Fig.4. System ports are: clk for clock, 
start_root for computation beginning, input 24-bit bus 
a(23:0) for input data, output 11-bit bus root(11:0) for output 
data, output signal end_root for indication that computation 
is finished. It consists of 36-bit register Reg1, 12-bit register 
Reg2, subtractor Subt1 that consists of 14 full adders and 14 
inverters, 4-bit counter Counter_4 and few simple logic 
gates. 

At the beginning, 24 least significant bits of Reg1 get the 
input value a. Other 12 most significant bits are set to zeros. 
Reg2 also gets zero value. Minuend is made of 14 most 
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significant bits of Reg1. Present result is stored in Reg2. At 
the beginning of computation, present result is zero. 
Subtrahend is made of present result and two binary digits, 
zero or one, appended to the right side of present result. If 
minuend is grater than subtrahend, present result is appended 
by binary digit one. Difference is stored on minuend’s place, 
in 14 higher bits of Reg1. After that, Reg1 is shifted left for 
two positions. If minuend is smaller than subtrahend, 
subtraction results are not stored. Reg1 is just shifted left for 
two positions.  

The algorithm is very fast. It uses only 12 iterations for 
the square-root completion. Every iteration is completed 
exactly in one clock period.  

4. BINARY SEARCH ALGORITHM  

This algorithm can be found solving many different tasks 
in programming. Here, this algorithm is modified to speed up 
root computation [6]. The computing procedure is simple:  

The resulting square root value, e.g. am am-1 am-2 ... a1 a0, 
has twice less number of bits comparing to input number, 
12 bits in our case. The algorithm finds the value of square 
root bit-by-bit. First, the most significant bit am, is assumed to 
be 1 and other bits are zeros. Number 100...0  is squared and 
subtracted from the input number. If the remainder is 
positive, the assumed bit is correct. If not, the bit is 0. In the 
next iteration, the next bit am-1  is assumed to be 1. Number 
am100...0 is squared and subtracted from the input number 
and the same considerations stand. The algorithm proceeds 
until LSB is considered.  

In order to speed up the algorithm, square computation is 
modified: If the  temporary  square-root  solution  is  number 
A = amam-1am-2...ak0...0 (bits am,am-1,am-2,...,ak  are computed 
in previous iterations, others are still unknown and replaced 
by zeros), guess is A'=amam-1am-2...ak10...0, i.e., assumed bit 
on position k-1 is 1. The square of the guess is computed 
using the square of temporary solution.   
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where A is the temporary solution. So, if square of temporary 
solution is known, square computation of guess is reduced to 
few shifting and addition operations. The algorithm is very 
fast - it uses only 12 clock iterations for the square-root 
completion, like previously described iterative algorithm.  

 
Fig.6. Block diagram of square rooter based on binary 

search algorithm 

Schematic of digital system implementing binary search 
algorithm is shown in Fig.6. The system ports are: clk port 
for clock, signal start_root for computation beginning, input 
24-bit bus b(23:0) for input data, output 12-bit bus root(11:0) 
for output data, output signal end_root for indication that 
computation has been finished. System is composed of: 
registers Reg1, Reg2 and Reg3; subtractor Subt1, adders Add1 
and Add2 composed only of logical OR gates; 4-bit 
synchronous counter Counter_4 and few simple logical gates 
in control logic. These parts function as follows. 

Reg1 is 24-bit register that stores the difference of input 
value b and square of temporary solution (A2). At the 
beginning of computation, temporary solution is A=00..0 (all 
binary numbers are unknown), so Reg1 is loaded with 
number B. 

Reg2 is also 24-bit register and stores value 2kA, i.e., 
temporary solution shifted for k places (k is the number of 
unknown binary digits in temporary solution). At the start of 
computation Reg2 is reset to all zeros. 

Reg3 is 12-bit register that holds 2k-1. At the beginning k 
is 12 and Reg3 stores hexadecimal value 800. It means that 
12 bits are unknown. After every clock rising edge, number 
of unknown digits is decremented and the value in Reg3 is 
shifted right.  

Subtractor Subt1, composed of 24 full adders and the 
same number of inverters, gives the control signal sel on 
carry_out output. If minuend is greater then subtrahend then 
sel is 1 and difference should be loaded into Reg1. Else, sel is 
0 and Reg1 retains its old value. Negative data should not be 
stored. 

Adders Add1 and Add2 are composed of logical OR 
gates. They get values of Reg2 and Reg3 outputs on their 
inputs. One of them provides subtrahend(23:0) on its output 
bus: 

subtrahend(23:0):=Reg2+(Reg3)2 =2kA+22k-2             (6) 

The other provides the data input for Reg2: 

Reg2:=Reg2>>1+(Reg3)2 =2k-1A+22k-2=2k-1(A+2k-1)= 

=2k-1(am am-1 am-2 ... ak 10...0)= 2k-1A’                             (7) 

The >>1 denotes that Reg2 value is shifted one bit to the 
right. There is no carry transition, so OR logical gates are 
used instead of full adders, providing significant saving in 
chip area. Number Reg2>>1 = 2kA>>1 has 2k-1 zeros at 
least significant positions, while  (Reg3)2=22k-2.  

In every iteration, subtraction is performed. Subtrahend, 
2kA+22k-2, is subtracted from minuend, Reg1 value (B-A2). If 
minuend is greater than subtrahend, guess A’ is correct and 
digit 1 is correctly assumed on bit position k-1. New 
temporary solution get value from previous guess A’. New 
values are stored in Reg1 and  Reg2: 

Reg1:=(B-A2 )- 2kA+22k-2=B-(A+2k-1)2=B-A’2             (8) 

Reg2:= 2k-1A’                                                                (9) 

If minuend is less than subtrahend, guess A’ is incorrect 
and digit 1 is not correctly assumed on bit position k-1, i.e., 0 
is the solution for bit position k-1. Temporary solution A 
retains its value, so Reg1 value is the same as previous one. 
Value in Reg2 is shifted right for one bit position: 

Reg2:= (Reg2>>1)=( 2kA>>1)=2k-1A                        (10) 
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After 12 (m+1=12) clock iterations, Reg2 holds correct 
value of square root which can be read on bus root(11:0)  

2kA = 20A = A = am am-1 am-2 ... a1 a0                          (11) 

The implementation is verified in VHDL, and 
synthesized in Cadence PKS logical synthesis tool. After that, 
standard cell net list was put into program Silicon Ensemble 
where placement and routing were performed. 

5.  RESULTS 

Comparing the implementations independently of the 
physical realisation, we can see that the implementation 
based on Newton-Raphson’s method requires greater number 
of clock periods (in range from 40 to 70 depending on input 
data) than the other methods (exactly 12 clock cycles) for 
completing the square root solution. 

All systems are verified in VHDL and implemented in 
same standard cell technology. So, the properties of the 
resulting solutions can be regularly compared. 

Namely, the first VHDL simulation was performed in 
ActiveHDL tool. Logical synthesis is done in BuildGates 
(part of Cadence). Alcatel 0.7µm CMOS standard cells 
technology has been chosen. As a result, logical synthesis 
produced standard cell net list that was brought to another 
Cadence program, Silicon Ensemble, where placement and 
routing were performed. Extracted signal propagation delay 
values and standard cell net list were put back into simulator 
NCsim where logical simulation was performed. Waveforms 
derived from NCsim matched with ones from ActiveHDL. 
Finally, layouts were verified by Design Rule Check analysis. 
As an example, layout derived from Silicon Ensemble for the 
iterative algorithm based square root implementation is 
shown in Fig. 5. 

 
Fig.5. Layout of digital system for square rooting made 

following iterative method 

Some properties of the considered implementations are 
compared in Table 1. Maximal clock frequency is determined  

Table 1. 

          System type 
Property 

Newton- 
Raphson's 

Iterative Binary 
Search 

Chip area 0.5 mm2 0.3 mm2 0.4 mm2 

Maximal  
Clock-frequency 17 MHz 31 MHz 14 MHz 

by maximal propagation delay in adders  and  subtractors. All 
proposed systems have incorporated adders with serial carry 
transition. If other types of adders were used, both occupied 
chip area and maximal clock frequency would be greater. 

6.  CONCLUSION 

Three square root implementations were designed and 
their properties were compared. System implementation 
based on iterative algorithm provides the solution with 
smallest chip area and power consumption, and maximal 
clock frequency. 

All proposed solutions are very flexible and can be 
modified if square root of a number with more or less than 24 
bits is required, if it is required to find bits after decimal 
point, etc. These demands can be accomplished by minor 
changes in VHDL code.  

It is worth to notice that Newton-Raphson's algorithm 
based square root computation circuit has the advantage of 
having built-in a division subsystem. So, it can be applied in 
all circumstances where both are needed, integer division and 
square root computation. In that case, significant saving in 
chip area can be accomplished. 

This work was supported in part by the Ministry of Science, 
Technology and Development of Serbia, through the Project 
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Sadržaj – U radu su razmotrene implementacije tri algoritma 
za izračunavanje kvadratnog korena nekog broja. Impleme-
ntacije Newton-Raphson-ovog, iterativnog i algoritma kore-
novanja binarnim pretraživanjem su projektovane, verifiko-
vane i upoređene. Kompletno su opisani algoritmi, fizičke 
realizacije sistema i njihovo funkcionisanje.  
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