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Abstract – In this paper, we will present the communication 
controller for the power meter IC. The realized controller is based 
on the I2C communication standard. The I2C standard was 
modified in order to provide addressing (for reading and writing) 
24-bit memory words in DSP part of the PMIC, instead of 
addressing individual PMICs. The controller contains the 
mechanism for the synchronization with DSP, which doesn't 
interfere DSP's performance. The design is synthesized using 
AMS 0.35 µm standard cells, and can be utilized in final product 
realization. Simulation results are also presented in the paper. 
 

I. INTRODUCTION 
 

Power meter integrated circuit (PMIC) is the 
integrated circuit that provides power consumption 
measurement. It consists of analog and digital part (DSP). 
The realized communication controller is a part of the 
digital design and has to provide tuning, remote control and 
monitoring of the PMIC. 

There are many common solutions for realizing a 
communication interface for digital control/signal 
processing ICs. Among these solutions, Inter-Integrated 
Circuit (I2C) bus seemed the most appropriate. The main 
benefit of I2C is its simplicity, which provides the designer 
to implement intelligent application-oriented signal 
processing circuits without encountering numerous 
interfacing problems. This interface is structured for 
economical, efficient and versatile serial communication. 

The I2C bus is a two-wire serial interface developed 
by the Philips® Corporation [1]. It consists of serial clock 
line (SCL) and serial data line (SDA) providing bi-
directional communication, facilitated through the use of 
"wire-and" (i.e., active-low, passive-high). Each device 
connected to the I2C-bus can operate as either a transmitter 
or receiver, and, in addition, devices can also be considered 
as masters or slaves. I2C specification supports 7-bit and 
10-bit address format, and data transmission is 8-bit 
oriented, with no limit in the number of bytes transferred. 
Concerning transfer rate, this specification supports data 
transmission up to 100Kbps in standard mode, and up to 
400Kbps / 3.4Mbps in fast/high-speed mode. 

At this point of the project development, the slave 
communication controller for the prototype PMIC is 
realized. The main purpose of this interface is to connect 
two-wire serial bus and 24-bit parallel bus in the DSP part 
of the PMIC in order to provide additional test function for 

the prototype. In this paper we will present the controller 
design, as well as some modifications of the I2C standard 
that had to be done in order to satisfy all the requirements 
needed for testing. 
 

II. COMMUNICATION CONTROLLER DESIGN 
 

The testing is about to be performed by reading from 
and writing to the internal memory words of the PMIC. At 
that point we had to modify the standard I2C interface, 
because it was primarily intended for master–slave 
communication, where master communicates to a number 
of slaves by addressing them individually. Our test concept 
considers one master reading from and writing to internal 
memory words of one slave device – the PMIC prototype. 
Thus, master is not addressing the slave units, but 
individual words within the PMIC. For the present, only 
the measurement part of the IC is developed with 64 
internal 24-bit words and one 24-bit command/status 
register. Thereby, 7-bit address format was adequate to 
address all the words in the chip. The address formats 
supported by I2C standard are detailed in [1]. 

In the following subsections we will present the main 
features of the controller, its operational flow, with the 
emphasis on synchronization mechanisms, implemented to 
insure accurate performance of the controller. 
 
A. Main Features and Structure 

 
Features of the realized I2C-like controller are: 
- Performance in slave mode; 
- Data transfer of 400 kbit/s (fSCL = 400 kHz); 
- 7-bit addressing; 
- Filtering of incoming data from SDA and SCL 

lines; 
- Detection of START, STOP and REPEATED 

START conditions [1]; 
- Latching of serial data bits from the SDA line 

with every falling edge of the SCL clock; 
- 4-byte communication protocol; 
- Synchronization with DSP part of the chip; 
- Synchronization with master (inserting Wait-

states). 
In I2C-bus communication master initiates data 

transfer and generates serial clock signal on the SCL line 
[1]. Since there's no need for the PMIC to initiate the 
transfer, only the slave mode is supported. We decided to 
use 400 kHz SCL frequency, because it gives us the ability 
to read all sampled data from the measurement part of the 
chip every second. 
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A block diagram of the slave communication 
controller, showing the basic structure of the design, is 
given in Fig. 1. There are three main parts of the block 
diagram: I2C interface, Address decode/internal bus 
interface and the on-chip memory (64 24-bit words) with 
the command/status register. First two blocks together 
compose the slave communication controller, and the third 
part represents the memory words and registers that are 
being read from and written to in the test process. On the 
other hand, I2C interface consists of I2C control logic block, 
24-bit data shift register and 8-bit address shift register. 
Data shift register holds data to be sent to the master over 
the serial bus or data received from the master. Address 
shift register is holding the 7-bit address of the memory 
word that is being read from or written to, as well as the 
R/W bit (LSB in the register), which determines the 
direction of data transfer. I2C control logic is connected to 
the SDA and SCL lines and is responsible for START, 
STOP and REPEATED START detection, incoming data 
filtering, and controlling the whole data transfer process. 

The synchronization with master is also performed in this 
block. This synchronization is firmly connected to the 
synchronization with DSP part of the chip, which is 
performed in Address decode/internal bus interface block. 
Both synchronization mechanisms are very important for 
proper functioning of the communication controller and 
they will be detailed in the latter subsections. In Fig. 1 is 
also shown that both SCL and SDA lines are pulled up with 
external resistors, which is needed in order to perform 
"wired-and" function. 

Concerning the communication protocol, we decided 
that every transfer would include the transmission of 
exactly four bytes: the first byte for address and R/W bit, 
and the remaining three for the 24-bit data. This is needed 
for the proper generation of some signals used for the 
synchronization with DSP. Apart this change of the I2C 
standard, we also decided to replace standard I/O stages 
with the bi-directional I/O pad buffers with internal active 
pull-up resistance and Schmidt-trigger circuit for input 
signal filtering. 
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Fig. 1. Block diagram of the realized communication controller 

 
B. Operational flow 
 

We've already mentioned that it’s always the master 
who initiates the transfer over the I2C bus. Master, first 
generates START condition, than sends the 7-bit address to 
the slave, and after that, the data transmission is performed 
[1]. On the other side of the bus line, slave controller's I2C 
control logic circuit monitors SCL and SDA lines in order 
to detect START condition. When this condition is 
detected the slave controller receives the address, together 
with the R/W bit. After that, data transfer is performed, and 
at the end, master can generate either STOP condition, 
meaning the end of the transfer, or REPEATED START 
condition, meaning initiation of another transfer session. 

The operational flowchart for the I2C-like 
communication controller is given in Fig 2. After the 
detection of START condition, the controller receives the 
address sent by master. In the realized design the address 

represents the address of the memory word in the DSP part 
or the address of the command/status register. These 
locations can either be read from or written to, which is 
determined by the R/W bit. Memory words contain the 
measured or calculated values of current, voltage and 
power. After the R/W bit is checked, the controller 
transitions to the transmitting or the receiving state. When 
receiving, it receives data from master byte by byte. I2C 
control logic block contains two counters: bit-counter, 
which counts the received bits so the controller would 
know when the whole byte is received, and byte-counter, 
so the receiver would know when all three bytes are 
received. Every data bit is shifted in the data shift register 
with the falling edge of SCL signal. When byte-counter 
counts to 3, meaning all three bytes are received, signal 
data_rdy is set to "1". This signal is needed to indicate that 
data is received and ready to be transferred from the data 
shift register to the addressed memory word in DSP, i.e. 



represents the request for data transfer from the controller 
to the DSP. After this the controller waits for the dtc (data 
transfer complete) signal, which indicates that the transfer 
is complete, so the I2C control logic can reset data_rdy 
signal. At that point, the controller is ready for another 
master-slave transfer. 

When transmitting, the controller first has to fetch 
data from the DSP and load it to the data shift register. 
Therefore, it first sets the addr_rdy signal to "1", which, 
similarly to the data_rdy signal, represents the request for 
data transfer from the DSP to the communication 
controller. After the dtc signal is set to "1" indicating data 
is loaded to the data shift register, controller starts the 
transmitting process, sending three bytes of data, byte by 
byte. 

Signals addr_rdy, data_rdy and dtc are used in 
synchronization mechanisms that are to be discussed in the 
next subsections. 

 

 
Fig. 2. I2C-like slave communication controller operational 
flowchart 

 
C. Synchronization with DSP 

 
During I2C master-slave communication there is a 

possibility that slave receives certain request from master, 
but also to be unable to respond because it's busy 
performing some other operation. In this case a problem 
may occur if master resumes the transfer, without waiting 
for the slave to finish current job and properly respond to 
the request. Therefore, some kind of synchronization 
mechanism is needed, in order to force the master into a 

wait state until the slave is ready for another transfer. I2C 
specification defines a clock synchronization mechanism 
that can be used to enable devices to cope with the fast data 
transfers, on either byte level or bit level. This mechanism 
is a type of handshake procedure, and it's performed by 
slave holding the SCL line low after reception of a byte, on 
byte level, or stretching the low period of SCL signal, on 
bit level. 

In our design it is certain that the controller is able to 
receive bytes at 400 kbit/s rate, but it may need more time 
to store received data or prepare data to be transmitted. In 
both cases, the core of the problem is that the 
communication controller and DSP are using the same 24-
bit internal bus for data transfer. DSP is using it during data 
processing, and it is obvious that the bus may be busy when 
the controller generates the request for data transfer. 
Therefore the controller needs to pull SCL line low until 
data transfer between the communication controller and 
DSP is complete. In that manner, the wait states are 
inserted. Since all data in DSP is 24-bit long, it is not 
needed to check if it is necessary to insert a wait state after 
each transferred byte. If needed, wait states are inserted 
after the address is received (slave transmitter), and after all 
three data bytes are received (slave receiver). On the other 
side, we designed a synchronization circuit, as a part of 
Address decode/internal bus interface, which synchronizes 
data transfer between the controller and the DSP, and 
signals to the I2C control logic when the transfer is 
complete. When I2C logic receives this signal, it can end 
the wait state, and the master can resume the transmission. 

I2C standard defines that transmission of every byte is 
followed by an acknowledge bit (ACK), generated by the 
receiver. Wait states, if needed, are inserted after the ACK 
bit. The duration of the wait state is determined by the 
mechanism for synchronization with DSP. In the previous 
section, we have mentioned addr_rdy, data_rdy and dtc 
signals. Signals addr_rdy and data_rdy represent the 
request to read from and write to the addressed memory 
word, respectively. When one of these signals is set to "1", 
the synchronization circuit checks if internal bus is busy. If 
the bus is not busy - data can be transferred immediately 
and the dtc signal is set to "1". If it is busy, this circuit 
waits for the bus to be released, and then performs the data 
transfer, setting dtc signal active just afterwards. The dtc 
signal set to “1” determines the end of the inserted wait 
state, i.e. that the slave should release the SCL line. 

This kind of synchronization mechanism implies that 
data shift register should have asynchronous load. Data is 
loaded in this register only when the controller has to 
transmit data to the master. On the other hand, this register 
is clocked by the external SCL signal, generated by master. 
If the wait state is inserted, there is no clock on the SCL 
line, so data couldn’t be loaded in the register when ready, 
if the load was synchronous. Therefore, we designed the 
synchronization circuit to generate the asynchronous load 
signal for the data shift register. The dtc signal is set to “1” 
just after the data is loaded to the register. 



 
Fig. 3. Simulation waveforms 

 
III. SIMULATION RESULTS 

 
After the VHDL description [2], the design was 

verified on the functional level. The design was tested for 
the two modes of operation: transmitter and receiver mode. 
Besides, we needed to specifically test the detection of 
REPEATED START condition and, also, to check if the 
synchronization circuit is performing properly. The 
waveforms obtained during the simulation are presented in 
Fig. 3. 

As it can be seen from the figure, the controller was 
first tested in the receive-mode, in the transmit-mode, and, 
at the end, detection of the REPEATED START condition 
was tested. In all three cases, the controller responded 
properly. Fig. 3 also shows the transitions of addr_rdy, 
data_rdy and dtc signals during the wait-state (marked part 
of the figure). The simulation was performed for the worst-
case wait-state period, which lasts for four periods of SCL. 
During that time, SCL is held low by the receiver. Signal 
detect_start from the waveform also shows proper 
detection of REPEATED START condition. 

 
IV FURTHER WORK 

 
For the utilization of the presented controller in the 

final product, further modification has to be performed. 
Since the controller will have to provide remote tuning, 
control and monitoring of a number of the PMICs, the 
protocol must be modified. First 3 bytes in message (24-bit 
sequence) would represent unique ID of the PMIC. They 
would be followed by another 24 address bits, with upper 
16 bits being insignificant at this point, and lower 8 bits 
intended for additional identification/command coding. 
These 8 bits will have the least significant bit (R/W) 
defining whether data is being written-to or read-from the 

PMIC, and upper 7 bits providing reading from and writing 
to all 128 24-bit memory words and registers in the final 
PMIC [3]. At the end of each message, a 24-bit information 
for message integrity checking would be appended. 

 
V CONCLUSION 

 
The realized communication controller fulfills the 

imposed requirements. After the VHDL-description based 
simulations, design synthesis was performed. The 
controller design is prepared for AMS 0.35 µm technology, 
using CADANCE Design Tools [4]. Post-synthesis 
simulation results match with the results obtained in 
VHDL-description based simulations. Verification of the 
whole digital part of the chip was also performed, and all 
the simulation results showed that the mechanism for 
synchronization with DSP doesn't interfere its performance. 

Apart of the appliance in PMIC, this design can be 
implemented as a part of other integrated circuits with the 
communication function based on I2C standard or some of 
its specific modifications. 
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