
I2C-Like Communication for the Power Meter IC

M. Cvetkovic, M. Jevtic and M. Dimitrijevic

Abstract – In this paper, we will present the communication
controller for the power meter IC. The realized controller is based
on the I2C communication standard. The I2C standard was
modified in order to provide addressing (for reading and writing)
24-bit memory words in DSP part of the PMIC, instead of
addressing individual PMICs. The controller contains the
mechanism for the synchronization with DSP, which doesn't
interfere DSP's performance. The design is synthesized using
AMS 0.35 µm standard cells, and can be utilized in final product
realization. Simulation results are also presented in the paper.

I. INTRODUCTION

Power meter integrated circuit (PMIC) is the
integrated circuit that provides power consumption
measurement. It consists of analog and digital part (DSP).
The realized communication controller is a part of the
digital design and has to provide tuning, remote control and
monitoring of the PMIC.

There are many common solutions for realizing a
communication interface for digital control/signal
processing ICs. Among these solutions, Inter-Integrated
Circuit (I2C) bus seemed the most appropriate. The main
benefit of I2C is its simplicity, which provides the designer
to implement intelligent application-oriented signal
processing circuits without encountering numerous
interfacing problems. This interface is structured for
economical, efficient and versatile serial communication.

The I2C bus is a two-wire serial interface developed
by the Philips® Corporation [1]. It consists of serial clock
line (SCL) and serial data line (SDA) providing bi-
directional communication, facilitated through the use of
"wire-and" (i.e., active-low, passive-high). Each device
connected to the I2C-bus can operate as either a transmitter
or receiver, and, in addition, devices can also be considered
as masters or slaves. I2C specification supports 7-bit and
10-bit address format, and data transmission is 8-bit
oriented, with no limit in the number of bytes transferred.
Concerning transfer rate, this specification supports data
transmission up to 100Kbps in standard mode, and up to
400Kbps / 3.4Mbps in fast/high-speed mode.

At this point of the project development, the slave
communication controller for the prototype PMIC is
realized. The main purpose of this interface is to connect
two-wire serial bus and 24-bit parallel bus in the DSP part
of the PMIC in order to provide additional test function for

the prototype. In this paper we will present the controller
design, as well as some modifications of the I2C standard
that had to be done in order to satisfy all the requirements
needed for testing.

II. COMMUNICATION CONTROLLER DESIGN

The testing is about to be performed by reading from
and writing to the internal memory words of the PMIC. At
that point we had to modify the standard I2C interface,
because it was primarily intended for master–slave
communication, where master communicates to a number
of slaves by addressing them individually. Our test concept
considers one master reading from and writing to internal
memory words of one slave device – the PMIC prototype.
Thus, master is not addressing the slave units, but
individual words within the PMIC. For the present, only
the measurement part of the IC is developed with 64
internal 24-bit words and one 24-bit command/status
register. Thereby, 7-bit address format was adequate to
address all the words in the chip. The address formats
supported by I2C standard are detailed in [1].

In the following subsections we will present the main
features of the controller, its operational flow, with the
emphasis on synchronization mechanisms, implemented to
insure accurate performance of the controller.

A. Main Features and Structure

Features of the realized I2C-like controller are:
- Performance in slave mode;
- Data transfer of 400 kbit/s (fSCL = 400 kHz);
- 7-bit addressing;
- Filtering of incoming data from SDA and SCL

lines;
- Detection of START, STOP and REPEATED

START conditions [1];
- Latching of serial data bits from the SDA line

with every falling edge of the SCL clock;
- 4-byte communication protocol;
- Synchronization with DSP part of the chip;
- Synchronization with master (inserting Wait-

states).
In I2C-bus communication master initiates data

transfer and generates serial clock signal on the SCL line
[1]. Since there's no need for the PMIC to initiate the
transfer, only the slave mode is supported. We decided to
use 400 kHz SCL frequency, because it gives us the ability
to read all sampled data from the measurement part of the
chip every second.

M. Cvetkovic, M. Jevtic and M. Dimitrijevic are with the
Department of Electronics, Faculty of Electronic Engineering,
University of Nis, Beogradska 14, 18000 Nis,
Serbia & Montenegro, E-mail: mcvetkovic@elfak.ni.ac.yu

A block diagram of the slave communication
controller, showing the basic structure of the design, is
given in Fig. 1. There are three main parts of the block
diagram: I2C interface, Address decode/internal bus
interface and the on-chip memory (64 24-bit words) with
the command/status register. First two blocks together
compose the slave communication controller, and the third
part represents the memory words and registers that are
being read from and written to in the test process. On the
other hand, I2C interface consists of I2C control logic block,
24-bit data shift register and 8-bit address shift register.
Data shift register holds data to be sent to the master over
the serial bus or data received from the master. Address
shift register is holding the 7-bit address of the memory
word that is being read from or written to, as well as the
R/W bit (LSB in the register), which determines the
direction of data transfer. I2C control logic is connected to
the SDA and SCL lines and is responsible for START,
STOP and REPEATED START detection, incoming data
filtering, and controlling the whole data transfer process.

The synchronization with master is also performed in this
block. This synchronization is firmly connected to the
synchronization with DSP part of the chip, which is
performed in Address decode/internal bus interface block.
Both synchronization mechanisms are very important for
proper functioning of the communication controller and
they will be detailed in the latter subsections. In Fig. 1 is
also shown that both SCL and SDA lines are pulled up with
external resistors, which is needed in order to perform
"wired-and" function.

Concerning the communication protocol, we decided
that every transfer would include the transmission of
exactly four bytes: the first byte for address and R/W bit,
and the remaining three for the 24-bit data. This is needed
for the proper generation of some signals used for the
synchronization with DSP. Apart this change of the I2C
standard, we also decided to replace standard I/O stages
with the bi-directional I/O pad buffers with internal active
pull-up resistance and Schmidt-trigger circuit for input
signal filtering.

+ VDD

I2C CONTROL LOGIC

24-BIT DATA
SHIFT REGISTER

8-BIT ADDRESS
SHIFT REGISTER

SCL

SDA

64 WORD
ON-CHIP
MEMORYCOMMAND/STATUS

REGISTER

I2C INTERFACE

RP RP

Address decode/Internal bus interface

En

CS Addr
24-bit Internal
Data Bus Address Bus

R/W

CS

Fig. 1. Block diagram of the realized communication controller

B. Operational flow

We've already mentioned that it’s always the master
who initiates the transfer over the I2C bus. Master, first
generates START condition, than sends the 7-bit address to
the slave, and after that, the data transmission is performed
[1]. On the other side of the bus line, slave controller's I2C
control logic circuit monitors SCL and SDA lines in order
to detect START condition. When this condition is
detected the slave controller receives the address, together
with the R/W bit. After that, data transfer is performed, and
at the end, master can generate either STOP condition,
meaning the end of the transfer, or REPEATED START
condition, meaning initiation of another transfer session.

The operational flowchart for the I2C-like
communication controller is given in Fig 2. After the
detection of START condition, the controller receives the
address sent by master. In the realized design the address

represents the address of the memory word in the DSP part
or the address of the command/status register. These
locations can either be read from or written to, which is
determined by the R/W bit. Memory words contain the
measured or calculated values of current, voltage and
power. After the R/W bit is checked, the controller
transitions to the transmitting or the receiving state. When
receiving, it receives data from master byte by byte. I2C
control logic block contains two counters: bit-counter,
which counts the received bits so the controller would
know when the whole byte is received, and byte-counter,
so the receiver would know when all three bytes are
received. Every data bit is shifted in the data shift register
with the falling edge of SCL signal. When byte-counter
counts to 3, meaning all three bytes are received, signal
data_rdy is set to "1". This signal is needed to indicate that
data is received and ready to be transferred from the data
shift register to the addressed memory word in DSP, i.e.

represents the request for data transfer from the controller
to the DSP. After this the controller waits for the dtc (data
transfer complete) signal, which indicates that the transfer
is complete, so the I2C control logic can reset data_rdy
signal. At that point, the controller is ready for another
master-slave transfer.

When transmitting, the controller first has to fetch
data from the DSP and load it to the data shift register.
Therefore, it first sets the addr_rdy signal to "1", which,
similarly to the data_rdy signal, represents the request for
data transfer from the DSP to the communication
controller. After the dtc signal is set to "1" indicating data
is loaded to the data shift register, controller starts the
transmitting process, sending three bytes of data, byte by
byte.

Signals addr_rdy, data_rdy and dtc are used in
synchronization mechanisms that are to be discussed in the
next subsections.

Fig. 2. I2C-like slave communication controller operational
flowchart

C. Synchronization with DSP

During I2C master-slave communication there is a

possibility that slave receives certain request from master,
but also to be unable to respond because it's busy
performing some other operation. In this case a problem
may occur if master resumes the transfer, without waiting
for the slave to finish current job and properly respond to
the request. Therefore, some kind of synchronization
mechanism is needed, in order to force the master into a

wait state until the slave is ready for another transfer. I2C
specification defines a clock synchronization mechanism
that can be used to enable devices to cope with the fast data
transfers, on either byte level or bit level. This mechanism
is a type of handshake procedure, and it's performed by
slave holding the SCL line low after reception of a byte, on
byte level, or stretching the low period of SCL signal, on
bit level.

In our design it is certain that the controller is able to
receive bytes at 400 kbit/s rate, but it may need more time
to store received data or prepare data to be transmitted. In
both cases, the core of the problem is that the
communication controller and DSP are using the same 24-
bit internal bus for data transfer. DSP is using it during data
processing, and it is obvious that the bus may be busy when
the controller generates the request for data transfer.
Therefore the controller needs to pull SCL line low until
data transfer between the communication controller and
DSP is complete. In that manner, the wait states are
inserted. Since all data in DSP is 24-bit long, it is not
needed to check if it is necessary to insert a wait state after
each transferred byte. If needed, wait states are inserted
after the address is received (slave transmitter), and after all
three data bytes are received (slave receiver). On the other
side, we designed a synchronization circuit, as a part of
Address decode/internal bus interface, which synchronizes
data transfer between the controller and the DSP, and
signals to the I2C control logic when the transfer is
complete. When I2C logic receives this signal, it can end
the wait state, and the master can resume the transmission.

I2C standard defines that transmission of every byte is
followed by an acknowledge bit (ACK), generated by the
receiver. Wait states, if needed, are inserted after the ACK
bit. The duration of the wait state is determined by the
mechanism for synchronization with DSP. In the previous
section, we have mentioned addr_rdy, data_rdy and dtc
signals. Signals addr_rdy and data_rdy represent the
request to read from and write to the addressed memory
word, respectively. When one of these signals is set to "1",
the synchronization circuit checks if internal bus is busy. If
the bus is not busy - data can be transferred immediately
and the dtc signal is set to "1". If it is busy, this circuit
waits for the bus to be released, and then performs the data
transfer, setting dtc signal active just afterwards. The dtc
signal set to “1” determines the end of the inserted wait
state, i.e. that the slave should release the SCL line.

This kind of synchronization mechanism implies that
data shift register should have asynchronous load. Data is
loaded in this register only when the controller has to
transmit data to the master. On the other hand, this register
is clocked by the external SCL signal, generated by master.
If the wait state is inserted, there is no clock on the SCL
line, so data couldn’t be loaded in the register when ready,
if the load was synchronous. Therefore, we designed the
synchronization circuit to generate the asynchronous load
signal for the data shift register. The dtc signal is set to “1”
just after the data is loaded to the register.

Fig. 3. Simulation waveforms

III. SIMULATION RESULTS

After the VHDL description [2], the design was

verified on the functional level. The design was tested for
the two modes of operation: transmitter and receiver mode.
Besides, we needed to specifically test the detection of
REPEATED START condition and, also, to check if the
synchronization circuit is performing properly. The
waveforms obtained during the simulation are presented in
Fig. 3.

As it can be seen from the figure, the controller was
first tested in the receive-mode, in the transmit-mode, and,
at the end, detection of the REPEATED START condition
was tested. In all three cases, the controller responded
properly. Fig. 3 also shows the transitions of addr_rdy,
data_rdy and dtc signals during the wait-state (marked part
of the figure). The simulation was performed for the worst-
case wait-state period, which lasts for four periods of SCL.
During that time, SCL is held low by the receiver. Signal
detect_start from the waveform also shows proper
detection of REPEATED START condition.

IV FURTHER WORK

For the utilization of the presented controller in the

final product, further modification has to be performed.
Since the controller will have to provide remote tuning,
control and monitoring of a number of the PMICs, the
protocol must be modified. First 3 bytes in message (24-bit
sequence) would represent unique ID of the PMIC. They
would be followed by another 24 address bits, with upper
16 bits being insignificant at this point, and lower 8 bits
intended for additional identification/command coding.
These 8 bits will have the least significant bit (R/W)
defining whether data is being written-to or read-from the

PMIC, and upper 7 bits providing reading from and writing
to all 128 24-bit memory words and registers in the final
PMIC [3]. At the end of each message, a 24-bit information
for message integrity checking would be appended.

V CONCLUSION

The realized communication controller fulfills the

imposed requirements. After the VHDL-description based
simulations, design synthesis was performed. The
controller design is prepared for AMS 0.35 µm technology,
using CADANCE Design Tools [4]. Post-synthesis
simulation results match with the results obtained in
VHDL-description based simulations. Verification of the
whole digital part of the chip was also performed, and all
the simulation results showed that the mechanism for
synchronization with DSP doesn't interfere its performance.

Apart of the appliance in PMIC, this design can be
implemented as a part of other integrated circuits with the
communication function based on I2C standard or some of
its specific modifications.

REFERENCES

[1] Philips Semiconductors, “The I2C-bus Specification - v2.1”,

www.semiconductors.philips.com
[2] K. C. Chang, “Digital System Design with VHDL and

Synthesis: An Integrated Approach”, IEEE Computer Society,
Los Alamitos, California, 1999.

[3] Milun Jevtic, Marko Cvetkovic, " I2C-bus communication",
Faculty of Electronic Engineering - LEDA Annual Report,
Nis, December 2002

[4] www.cadence.com

