
 64

THE VHDL-AMS LANGUAGE IMPLEMENTATION IN ALECSIS SIMULATOR*
Bojan Anđelković, Milunka Damnjanović, Faculty of Electronic Engineering, Niš

* This work was supported in part by the Ministry of Science, Technology and Development of Serbia, through the Project IT.1.02.0075.A
realized in Technology Development area.

Abstract – The simulator Alecsis is a mixed-signal and
mixed-domain simulator with object-oriented HDL, AleC++
providing very useful modeling properties not found in
standard languages. However, having in mind the convenient
features that standardization brings, the VHDL-AMS
language is incorporated in Alecsis. The details of
implementation method and VHDL-AMS models integration
are described in this paper.

1. INTRODUCTION

Many of today’s system designs are often mixed-signal
and mixed electrical/non-electrical containing analog and
digital subsystems, embedded software and sometimes
optical, magnetic and/or micromechanical devices. For the
development of such systems designers need both, powerful
simulators and a uniform hardware description language
(HDL) for modeling. With the approval of IEEE VHDL
1076.1-1999. standard (informally known as VHDL-AMS,
where AMS stands for Analog and Mixed-Signal) [1], a high-
level design language for both mixed digital and analog sys-
tems design, as well as for multi physics applications, is
available. The major benefit of the standard language is the
possibility of creating exchangeable models that can be used
across companies and across design packages. Once devel-
oped models can be used in different simulation tools. Driven
by these benefits, models of components are more and more
developed using VHDL-AMS and many companies have
been developing implementations of the language standard
into their simulation packages. However, the standardization
does not meet all demands in modern Application Specific
Integrated Circuits (ASIC) and Systems-on-a-Chip (SoC)
design. Recently developed standard HDLs, such as VHDL-
AMS and Verilog-AMS, cannot be used for the description of
software routines necessary in SoC designs. Also, some tool
specific, non-standard HDLs have some very convenient
modeling features, such as object-orientation, that are not
found in standard languages. Therefore, many modern simu-
lators often support a few HDLs (Advance MS from Mentor
Graphics, SMASH from Dolphin Integration etc.). This gives
designers freedom in modeling complex systems while still
they can enjoy reusability of the models developed in
standard languages.

One such approach is implemented in simulator Alecsis
(Analog and Logic Electronic Circuit SImulation System) de-
veloped at the Faculty of Electronic Engineering Niš [2].
Alecsis provides a convenient environment for simulation of
digital, analog, mixed-signal and multi domain systems. It
has its own, object-oriented HDL, AleC++ (Analog and
Logic Electronic C++) developed as a superset of a program-

ming language C++. Therefore, AleC++ can be used for the
description of software routines and their object-oriented fea-
tures can be very useful in modeling. Although it has some
advantages, the existence of standard HDLs and their import-
ance in the design process cannot be neglected. Having that
in mind, VHDL-AMS language has been incorporated into
Alecsis simulation environment. This paper discusses process
of the incorporation and AleC++/VHDL-AMS models
integration and simulation.

A short overview of Alecsis organization will be given at
the beginning. After that the concept of implementation of
the new language into Alecsis will be explained in more
details, as well as AleC++ and VHDL-AMS models
integration. One simulation example will be given in order to
illustrate the use of VHDL-AMS in Alecsis.

2. ALECSIS SIMULATION ENVIRONMENT

Organization of the simulator Alecsis is shown in Fig. 1.
It contains three separated functional modules: compiler,
linker/loader and simulation engine. Compiler translates
models described in AleC++ into AleC++ object code
(internal binary format of the simulator) that simulator can
read. That code can be saved as a library file and invoked
later by the simulator or distributed directly to the linker for
further processing. The linker/loader resolves all global
symbol names and generates all necessary data for the
simulation engine. The simulation engine performs the
process of the simulation according to the data given in the
model and simulation control parameters. It contains virtual
processor that interprets AleC++ object code. This approach
of emulating a real processor is used in order to make the
whole package portable between different platforms.

AleC++
object code

AleC++
object code

AleC++
object code

and simulation
parameters

AleC++
code

VHDL-AMS
code

AleC++
compiler

model
libraries

simulation
enginelinker/

loader virtual
processor

waveform
display

tool

VHDL-AMS
compiler

Alecsis simulator

Fig. 1 Organization of the simulator Alecsis

Zbornik radova XLVII Konf za ETRAN, Herceg Novi, 8-13 juna 2003, tom I
Proc. XLVII ETRAN Conference, Herceg Novi, June 8-13, 2003, Vol. I

 65

3. VHDL-AMS COMPILER DEVELOPMENT

Having in mind the structure of the simulator Alecsis,
shown in Fig. 1., it can be concluded that the simplest way to
implement VHDL-AMS language was to keep the existing si-
mulation kernel and to develop a new compiler suited for that
language. The new, VHDL-AMS compiler, translates VHDL-
AMS source code into AleC++ object code. In that way
simulator does not make any difference between object files
generated from AleC++ and VHDL-AMS compilers and
compiled VHDL-AMS models can be used as any other
AleC++ models.

VHDL-AMS compiler was designed using the classic
front-end/back-end compiler structure [3] and its organization
is shown in Figure 2.

lexical
analyzer

parsersymbol table
manager

VHDL-AMS
source code

AleC++
object code

tokensget next
token

front-end

back-end
intermediate

form

object code
generator

+ optimizer

VHDL-AMS
Compiler

Fig. 2. VHDL-AMS compiler structure

Since AleC++ is based on standard HDLs, such as
VHDL-AMS, correspondence between the two can be easily
established and it is shown in Figure 3. It enables VHDL-
AMS compiler to form appropriate data structures that can be
converted into AleC++ object code by using the back-end
part of the AleC++ compiler with some minor changes. In
that way it is necessary just to construct the front-end part of
VHDL-AMS compiler.

 module architecture
 function function

 function call function call
of instance module instance of component

 node terminal
 current through quantity

free quantityflow
simple eqn, across eqn, through eqn simple simultaneous statement

procedure

nature

model card
global variable

ddt dot
idt integ

VHDL-AMSALEC++

Fig. 3. AleC++/VHDL-AMS language correspondence.
Shadowed items do not have appropriate counterparts

Front-end part consists of two components: lexical
analyzer (scanner) and syntax analyzer (parser) [3]. They
perform a syntactic and semantic analyzis of the VHDL-
AMS source code and generate the intermediate
representations. Lexical analyzer reads the stream of
characters making up the source code from left-to-right and
groups them into the logical entities, called tokens, having a
collective meaning. During this phase, the compiler detects
identifiers, operators and keywords. The blanks separating
the characters of the tokens and comments are ignored. In the
input source code text there is a set of strings generating the
same token as output. This set of strings is described by a
rule, called pattern, associated with the token. Tokens
produced by the lexical analyzer are then used by parser.
Interaction between scanner and parser is implemented by
making the lexical analyzer to be a subroutine to the parser.
Lexical analyzer for VHDL-AMS compiler is automatically
generated from the appropriate specification by the FLEX
program. It is a Windows version of the program LEX,
commonly used for this purpose under UNIX operating
system. The output is a file in C programming language.

Syntax analyzer groups the tokens identified by the
scanner into grammatical phrases that compiler uses for
generating the target code. It is constructed from the VHDL-
AMS language grammar given in BNF (Backus-Naur Form)
notation. A few grammar simplifications had to be made to
avoid ambiguities inherent within the VHDL-AMS BNF. The
output of the parser is an intermediate representation of the
source code containing structures called parser trees. Parser
trees are used for representing constructs of the language
such as statements, expressions etc. Parser for VHDL-AMS
compiler is generated by Berkley's YACC (Yet Another
Compiler-Compiler) that is a Windows version of the popular
UNIX program YACC. Similarly to the scanner, the output is
a C-file.

During these phases semantic analyzes is also performed.
The main task in this analyzes is type checking. A data
structure called symbol table is used for storing a record for
each identifier together with its type, initial value and other
important information.

VHDL-AMS compiler also has the possibility of
recognizing syntactic errors in the VHDL-AMS data stream
and reporting them to the user.

As mentioned before, back-end of the compiler is almost
the same as the one used in AleC++ compiler.

VHDL-AMS uses the theory of Differential and
Algebraic Equations (DAEs) for the continuous systems
describing. For representing unknowns in the DAE's, VHDL-
AMS provides a new class of objects, the quantity [1].
Quantities can also be used as ports of the model. Special
kind of quantities, called branch quantities, are used for
describing conservative systems, such as electrical circuits.
Two kinds of branch quantities are introduced: across
quantities representing effort like effects (voltage, pressure)
and through quantities for flow like effects (current, fluid
flow rate). They are declared with reference to two terminals.
Terminal is another new object in VHDL-AMS, and it can be
of different nature representing distinct energy domains
(electrical, thermal). Terminals-specifying as ports of the

 66

model is used for constructing nodes in hierarchical
descriptions when the models are instantiated.

AleC++ uses the element called link for representing the
unknowns in the system of equations [2]. It can be of one
from five different types: node, current, flow, charge and
signal. Therefore, electrical across quantities in VHDL-AMS
correspond to the difference of voltage nodes, nodes to
terminals and electrical through quantities to current. Free
quantities in VHDL-AMS have flows as their counterparts in
AleC++. Since Alecsis does not make any difference between
nonelectrical across and through quantities all of them can be
treated as flows.

Relationships between quantities in VHDL-AMS are
expressed by using simple simultaneous statements [1].
Similar constructs for describing equations exist in AleC++:
one for non-conservative and two for conservative systems.
Therefore, similar functions in both AleC++ and VHDL-
AMS compilers can be used for determining contributions of
the equations to the system matrix. Nodes to which the
equation contributes are terminals for the appropriate across
or through quantities. In order to determine terminals
corresponding to the across or through quantity appearing in
the equation, the terminal names are stored when quantities
are declared together with the name and type of quantity –
through or across. The system of equations is then formed by
evaluating simple simultaneous statements and by resolving
terminal and quantity declarations.

VHDL-AMS attributes for derivative and integration
over time exist in AleC++, too, so they can be easily
implemented in VHDL-AMS compiler.

VHDL-AMS provides conditional and selected forms of
the simultaneous statement that allow choosing appropriate
equations depending on some condition(s). AleC++ also
provides such constructs, so they can be parsed in VHDL-
AMS compiler by using similar functions as in AleC++
compiler.

4. VHDL-AMS MODELS INTEGRATION
As it can be seen in Fig. 3, every VHDL-AMS

architecture with appropriate entity relates to one module in
AleC++ and they are compiled to the same library objects.
Another basic language element is function. Code combining
under this level is forbidden. VHDL-AMS/AleC++ models
interaction is enabled through the instantiation of the
components and calling functions described in the other
HDL. Thus, it is possible in VHDL-AMS models to use
components and call functions defined in AleC++ and vice
versa [4].

In order to integrate VHDL-AMS models with Alecsis it
is also very important to establish data type correspondence
between the HDLs. That task can be easily accomplished
since both languages have the same machine representation
of data types (Figure 4). Having in mind data type system in
VHDL-AMS, branch quantities get their types from the
nature of their plus and minus terminals.

 double

 data types correspondence

real
 int integer

 struct record
enum enumeration type

VHDL-AMSALEC++

Fig. 4. AleC++/VHDL-AMS data types correspondence

5. SIMULATION EXAMPLE
As an example of VHDL-AMS models integration and

simulation, a model of Butterworth filter based on the
example found in [5] is presented here. RC net and voltage
controlled voltage source for the filter model are described as
separate VHDL-AMS components (Fig.5 and Fig.6). Both
components are described by using simple simultaneous
statements with branch quantities.
entity rcnet_e is

generic (resin1, resin2: real;
res1, res2, res3, res4, res5, res6,
res7, res8, res9: real;
resa: real;
cap1, cap2, cap3, cap4: real);
port (terminal t1, t2, t3, t4, t5, t6,

t7, t8, t9, t10, gnd: electrical);
end entity rcnet_e;
architecture rcnet of rcnet_e is
terminal t11: electrical;

quantity v1 across i1 through t4 to
gnd;

quantity v2 across i2 through t5 to
t4;

...
quantity vc3 across ic3 through t6 to

t11;
quantity vc4 across ic4 through t7 to

gnd;
begin
i1 == 1/res1 * v1;
i2 == 1/res2 * v2;
...
ic3 == cap3 * vc3'dot;
ic4 == cap4 * vc4'dot;

end architecture rcnet;

Fig. 5. VHDL-AMS model for RC net of the filter

entity vcvsgen_e is

generic (gain: real);
port (terminal t1,t2,t3,t4:

electrical);
end entity vcvsgen_e;
architecture vcvsgen of vcvsgen_e is

quantity vout across iout through t1
to t2;

quantity vc across ic through t3 to
t4;

begin
 vout == gain*vc;

end architecture vcvsgen;

Fig. 6. VHDL-AMS model of voltage controlled voltage
source

These components are instantiated and the filter circuit is
created (Fig. 7).

entity filter_e is

 67

port (terminal f1, f2, f3, f4, f5, f6,
f7, f8, f9, f10, fgnd: electrical);
end entity filter_e;

architecture filter of filter_e is
component vcvsgen

...
end component;
component rcnet
 ...
end component;
begin
g0: rcnet ...
g1: vcvsgen ...
g2: vcvsgen ...

end architecture filter;

Fig. 7. VHDL-AMS model of Butterworth filter

AleC++ code for the circuit verification is given in
Figure 8, and appropriate simulation results are presented in
Figure 9.

#include <alec.h>
#define Period 15 ms
module filter (node f1, f2, f3, f4,

f5, f6, f7, f8, f9, f10, fgnd);
module vcvsgen (node t1, t2, t3, t4)

action (double gain);
module rcnet (node t1, t3, t4, t5, t7,

t8, t9, gnd)
action(double resin1, double resin2,
double res1, double res2, double res3,
double res4, double res5, double res6,
double res7, double res8, double res9,
double resa, double cap1, double cap2,
double cap3, double cap4);
library "filter";
library "rcnet";
library "vcvsgen";
root test() {
 filter f1;
 vsin vin;

vin (n1, 0)
{amp=10v;freq=159.1549431;}

 f1 (n1, n2, n3, v1, n5, n6, n7, v5,
n9, n10, 0);

Fig. 8. AleC++ code for the filter verification

6. CONCLUSION
VHDL-AMS is a standard HDL providing the mixed-

signal solutions for the behavioural modeling of mixed
analog-digital and multi physics systems. Having in mind its
importance for portability and reusability of created models,
it has been incorporated in simulator Alecsis. On that way,
designers can use already developed VHDL-AMS models
while exploiting at the same time good features of a non-
standard HDL AleC++ to overcome limitations in standard
languages.

Time (s)
Vo

lta
ge

 (V
)

Fig. 9. Butterworth filter simulation results. Traced signals
are voltages in some nodes of the circuit

REFERENCES
[1] ---, IEEE Standard VHDL Language Reference Manual

(Integrated with VHDL-AMS changes) – IEEE Std 1076-
1, draft version, New York IEEE, 1998.

[2] Ž. Mrčarica et al., Alecsis 2.3, the simulator for circuits
and systems. User’s Manual, Laboratory for Electronic
Design Automation, Faculty of Electronic Engineering,
University of Niš, Yugoslavia, LEDA – 1/1998.

[3] A. Aho, R.Sethi, J. Ullman, Compilers – Principles,
Techniques and Tools, Addison Wesley Publishing
Company, Reading, Massachusetts, 1986.

[4] V. Litovski, Ž. Dimić, M. Damnjanović and Ž. Mrčarica,
“Electronic circuit simulation in a mixed-language
environment”, Microelectronics journal, vol. 29, No. 8,
pp. 553-558, 1998.

[5] SEAMS Homepage, http://www.ececs.uc.edu/~mistie/

Sadržaj – Simulator Alecsis je hibridni simulator koji
poseduje objektno orijentisani jezik za opis hardvera,
AleC++, koji ima veoma korisne osobine u modelovanju
kojih nema u standardnim jezicima. Međutim, imajući u vidu
pogodnosti koje donosi standardizacija, jezik VHDL-AMS je
ugrađen u Alecsis. U ovom radu opisan je metod
implementacije i integracija VHDL-AMS modela.

IMPLEMENTACIJA JEZIKA VHDL-AMS U
SIMULATORU ALECSIS

Bojan Anđelković, Milunka Damnjanović

