

Lab 9.1

¢ In this lab you will:
« Complete the description of a simple combinational function
« Become familiarized with the synthesis tool
¢ In directory labg.1 you will find the following files:
e comb.v Arbitrary combinational function (incomplete)
e th.v Self-checking testbench

P R

Lab 9.1

¢ Edit the file "comb.v" and locate the always block. Notice
the empty sensitivity list.

© Add the name of all input signals to the always block.

¢ Simulate the design using the provided testbench:

% verilog tb.v comb.v

¢ If the testbench does not declare your circuit as correct,
make sure your sensitivity list includes all input signals
(and only input signals).

© Compile the design using the synthesis tool of your choice.
Detailed instructions are available in Appendix C. Use only

the tool you are most likely
to use at work.

Lab 9.1: Synopsys
© Invoke dc_shell using the command:

% dc_shell
© Read the design using the command:

dc_shell> read -format verilog comb.v

¢ Pay attention to any warning or error issued by the synthesis
compiler.
o It should indicate if some signals are missing or extraneous from the
sensitivity list of the always block.
¢ Add any missing signals or remove any
extraneous signals. Resimulate and
recompile until no warnings are
produced.

Lab 9.1: Synopsys

© Map your design to gates using the command:

dc_shell> compile

¥ Report the area and timing performance of the final design
using the commands:

dc_shell> report area
dc_shell> report_timing

Exit the synthesis tool using the command:

dc_shell> quit

Lab 9.2

¢ In this lab you will:

« Complete the description of a simple combinational function

¢ In directory labg.2 you will find the following files:
o decode.v 2-to-4 decoder (incomplete)
e th.v Self-checking testbench

Lab 9.2

© The circuit to describe is a 2-to-4 decoder. The following
truth table describes the function:

CODE | DECODE
00 | 0001
01 | 0010
10 | 0100
11 | 1000

© Add the necessary statements in the module to complete a
synthesizable functional description of the decoder.

Lab 9.2

© Verify the correctness of your description by simulating the
decoder model using the provided testbench.

% ... tb.v decode.v

© Once the functionality is declared correct, synthesize your
design.

© Compare the performance of your design with that of
others and with the proposed solution.

« Compare the description of your design with another and try to
understand why one is faster and/or smaller.

Lab 9.2 : Optional

¥ Describe the decoder function using only continuous
assignments

« Verify correctness, then synthesize.

© Which solution yielded:

« A working design in less time?
« A smaller and/or faster design?
« A description easier to understand and maintain?

10

Lab 9.3

¢ In this lab you will:

« Describe a complex combinational logic circuit using abstract
statements

¢ In directory labg.3 you will find the following files:
« bit_count.v Bit counter (incomplete)
o tb.v Self-checking testbench

12

Lab 9.3

¢ Examples:

INPUT VECTOR

© The function of the circuit is to combinationally count the
number of bits that are set to '1' in a 32-bit input vector.

© A second 4-bit output is set to 1, if thereisa '1' in the
corresponding byte in the input vector.

OUNT BYTE

00000000_00000000_00000000_ 00000000
00000001_00000000_ 10000000 00000000
00000011_00000000_ 00000001 00011000
00000000 11111111 11111111 00000000
11111111 11111111 11131111 11111111

0000
1010
1011
0110
1111

Lab 9.3

© Verify the correctness of your description by simulating the
decoder model using the provided testbench.

% ... tb.v bit count.v

© Once the functionality is declared correct, synthesize your
design.

© Compare the performance of your design with that of
others and with the proposed solution.

« Compare the description of your design with another and try to
understand why one is faster and/or smaller.

14

Lab 9.4

¢ In this lab you will:

« Learn how to avoid inferring latches
« Deal with incomplete specifications

¢ In directory labg.4 you will find the following files:
o logic_unit.v Logical unit (incomplete)
e tb.v Self-checking testbench

16

Lab 9.4

© The logical unit takes as input three arguments:
« Operands A & B: 3-bit 2's complement numbers

« Opcode
© Depending on the selected opcode, the output "C" is set to:
OPCODE | C
0000 | A&B
0001 | A|lB

© Depending on the selected opcode, the output "T" is set to:

OPCODE | T
1000 | "1° 1f A< 0, "0" otherwise
1001 | "1° 1f B < 0, "0" otherwise

17

Lab 9.4

© Add the necessary statements in the module to complete a
synthesizable functional description of the logical unit.

© Verity the correctness of your description by simulating the
decoder model using the provided testbench.

% ... tb.v logic unit.v

© Once the functionality is declared correct, synthesize your
design.

¢ Compare the performance of your design with that of others and
with the proposed solution.

« Compare the description of your design
with another and try to understand why
one is faster and/or smaller.

18

Lab 9.5

¢ In this lab you will:

« Learn how to infer tristate devices
« Differentiate between multiplexers and internal busses

@ In directory labg.5 you will find the following files:
o xbar.v Cross-bar switch (incomplete)
e tb.v Self-checking testbench

20

Lab 9.5

© The design is a 3x3 crossbar switch is described in the

schematic below.

11

RAzzwedd R1 =10 R1 =01
~ ~_ ~_
L L L
R2:2 2% R2= 10 R2= 01
~_ ~_ N
| | |
T Rl R3= 10 Ry
> B B
LY @ Y
02

O3

21

Lab 9.5

© For example, if R1 is set to "11, then input I1 is routed to output
"O3”. If Riisset to "00”, then input I1 is not routed to any output.

¢ It is possible for the crossbar switch to leave an output floating
(e.g. "O1" is left floating if none of Ri1, R2, nor R3 is set to "o1").

¢ It is possible for the crossbar switch to create contention on an
output (e.g. there will be contention on output "O2”, if more
than one of R1, R2, or R3 is set to "10").

¢ Hint: Using a single always block produces a
multiplexer; the always block doesn’t infer
tristate devices.

« Why?

22

Lab 9.5

© Add the necessary statements in the module to complete a
synthesizable functional description of the crossbar switch.

© Verity the correctness of your description by simulating the
decoder model using the provided testbench

i ey A Al DA

© Once the functionality is declared correct, synthesize your
design.

¢ Compare the performance of your design with that of others and
with the proposed solution.

« Compare the description of your design
with another and try to understand why
one is faster and/or smaller.

23

Lab 9.6

¢ In this lab you will:

« Learn how to infer flip-flops
« Control the number of flip-flops inferred

¢ In directory labg.6 you will find the following files:
o shifter.v Linear shifter (incomplete)
e tb.v Self-checking testbench

25

P e

Lab 9.6

© Add the necessary always block in the SHIFTER module to
infer the following circuit:

© The clock is active on the rising edge.
¥ Be careful not to infer 5 flip-flops instead of 4.

26

Lab 9.6

© Add the necessary statements in the module to complete a
synthesizable functional description of the linear shifter.

© Verity the correctness of your description by simulating the
decoder model using the provided testbench:

i B R BV B By e

© Once the functionality is declared correct, synthesize your
design.

¢ Compare the performance of your design with that of others and
with the proposed solution.

« Compare the description of your design
with another and try to understand why
one is faster and/or smaller.

27

	Lab 9.1
	Lab 9.1
	Lab 9.1
	Lab 9.1: Synopsys
	Lab 9.1: Synopsys
	Lab 9.2
	Lab 9.2
	Lab 9.2
	Lab 9.2
	Lab 9.2 : Optional
	Lab 9.3
	Lab 9.3
	Lab 9.3
	Lab 9.3
	Lab 9.4
	Lab 9.4
	Lab 9.4
	Lab 9.4
	Lab 9.5
	Lab 9.5
	Lab 9.5
	Lab 9.5
	Lab 9.5
	Lab 9.6
	Lab 9.6
	Lab 9.6
	Lab 9.6

