

[oD 2]

¢ In this lab, you will:
 Learn to use various operators
* Witness the effect of operation sizes
e Use registers as targets of assignments
e Use concatenated assignment targets
e Learn the difference between a vector and a memory

[oD 2]

¢ In directory ~/lab2.1, you will find a file named "try.v". It
contains an initial block with a single $write statement that
is used to display the binary result of an expression.

* Replace the "<expression>" in the $write statement with
each of the expressions on the next slide.

* What are the results you expect?
* Run the simulation to determine if you were right.

* Repeat the exercise, this time assigning the result of the
expression to an 8-bit register, then
displaying the contents of the register.
Explain any differences.

[oD 2]

i be] * 14"p1000

e -1 ¢ (1'bl) 2 1°b7 = 3 PhX

e -1"b1 o (1 bx) 2:1"bl 21 "b0O

o1 << 1 oGl b)) 2 1=bl=15h0

e 1%bl w1} * (2"b10 & 2"b01) ? 1"b1 : 17bO
* &4"b1111 * (2°b10 && 2"b01) ? 1"b1 : 1"bO
°* &4"bl11 e (1"bx == 1"bx) ? 1"b1 : 1°b0O

*]14"b0x10 ° (1"bx === 1"bx) ? 1"b1l : 1"bO
* 14"b0x00 o f1°b1 {2°b01 . S°hl1 Ly

e 1°p1111 & 1 e 341 b1 2 hoyy

[oD 2]

¢ In that same directory, you will find a file named
"reversal.v". It contains a declaration of a 4-bit register and
an initial block that sets the register with a bit pattern,
attempts to reverse it, then displays the final content of the
register.

* Try to compile and simulate the Verilog model.

* You receive an error during compilation and never have the
chance to simulate. Why?

[oD 2]

* A bit reversal of a register can be performed in two ways:

R = {R[11, RI[2]. R[31, R[41}:

{R[1]1. R[2]. R[31. R[41} = R;

* Replace the faulty statement with one of the above
statements and simulate. Try it with the other statement
and simulate to verify that the result is the same.

* Note to ModelSim 5.1e users: At the time these notes were written, a
bug in the simulator produced a wrong result in the second case.

* Try both statements above, but this time

with register R declared:

Lab 2.1: Optional

* In the same directory, you will find a file named
'regvsmem.v . It contains a declaration of a 4-bit register,
then some operations on that register.

* Modity the register declaration to turn it into a 4x1-bit
memory element: reg R[4:1]:

* Try to simulate without further modifications. Why are
syntax errors now present?

* Fix any syntax errors and modify the source code to obtain
an identical behavior as the previous simulation.

Lab 2.2

* In this lab, you will:

e Learn how to use the if and case statements

e Learn how unknowns are handled in the ifand case
statements

e See how a case statement can be used to model an FSM

P

Lab 2.2

* In directory ~/lab2.2, you will find a file named "if.v".

* This file contains a model that attempts to ensure that a
register was set to 1'b1. However, this register was clearly set
to 1'bx. Why isn't the error message displayed?

* Can you fix the problem with the if statement?

Lab 2.2

* Inanew file, create a module that contains a single always block
and an 8-bit register named R.

* Translate the following pseudo-code into Verilog in the always

block: if R equals all X"s then
set R to all O0"s
else 1T R 1s less than 10
then
increment R by 3
else 1T R 1s less than 120

then

shift R left by 2
else

display R then terminate
end 1f

* Simulate your model. Verify that the
answer is 8'hCo.

Lab 2.2

* In the same directory, you will find a file named "case.v": It
contains a case statement that implements a state
machine.

» After 8 transitions, the machine is stuck in state 3'bozio.
Why?

* Notice how the digits 'x' and 'z’ are used like 'o' and '1'. Does
the case statement act like the "==" or the "===" operator?

* Change the case statement to a casez. What is the
transition sequence? Why? Repeat for a casex statement.

Lab 2.2 : Optional

» Using a single case statement (no casez nor casex),
translate the following pseudo-code into Verilog.

M(3 downto 0) := "011X";
if M(O) = "1" then 1 = O;
elsit M(1) "1" then 1
elsit M(2) "1" then 1

elsit M(3) "1" then 1
else 1 = -1;

end 1f;

write(''t = %d', 1);

* Simulate to verify that the answer is 1.

Lab 2.3

* In this lab, you will:

e Learn how and when to use the various loop statements

e Learn the difference between the always and forever
statements

e Learn to recognize common mistakes that create infinite
loops

P e

Lab 2.3

¢ In directory ~/lab2.3, you will find a file named "forever.v".
It contains an initial block with an infinite loop.

* Compile the file and fix any syntax errors you may find.
* Why isn't an always statement valid in an initial statement?

Lab 2.3

* The following pseudo-code generates walking 1s. Translate
it into Verilog, using a repeat loop and a single initial block.

PATTERN = 1;
repeat 16 times:
Display pattern

shift pattern left by 1
terminate

* Simulate to verify that walking 1s are generated.

* Optional: Add the necessary code to generate walking os
after the walking 1s.

. Lab 2.3

* The following algorithm finds the index of the least significant
bit set in a register. Translate into Verilog using a single while

loop.
R(15 downto 0) = E7A0 (hex);
1 = 0;
whille bit #1 1s not set

increment 1
display 1

* Simulate to verify that the answer is 5.

e Optional: What happens if R is set to
16'hoooo? Can you modify your model
to handle this case?

. Lab 2.3

* The following algorithm reverses and negates the content
of a register. Translate into Verilog using a single for loop.

R(15 downto 0) = E7AO0 (hex);
for 1 1n O to 15 loop

tmp(15-1) = ~R(1);

end loop
display tmp

* Simulate to verify that the answer is FA18.

* Optional: What happens if "i" is declared
as a 4-bit register?

Lab 2.4

* In this lab, you will:

e Learn to recognize common syntax errors in functions
and tasks

e Learn how to use functions and tasks
e Learn how arguments are passed to functions and tasks

Lab 2.4

¢ In directory ~/lab2.4, you will find a file named "syntax.v".

* Try to compile it: You will have syntax errors.
* Fix the syntax errors until the compilation is clean.
* Run the simulation and make sure the result is As.

P e

Lab 2.4: Optional

* In the same directory, you will find a file named "strange.v".

¢ If you simulate this model, it displays two different values
for a register: one comes from a function, the other from a
task.

* Why are the results different?
* Can you modify the task so the results will be the same?

	Lab 2.1
	Lab 2.1
	Lab 2.1
	Lab 2.1
	Lab 2.1
	Lab 2.1
	Lab 2.1: Optional
	Lab 2.2
	Lab 2.2
	Lab 2.2
	Lab 2.2
	Lab 2.2
	Lab 2.2 : Optional
	Lab 2.3
	Lab 2.3
	Lab 2.3
	Lab 2.3
	Lab 2.3
	Lab 2.3
	Lab 2.4
	Lab 2.4
	Lab 2.4
	Lab 2.4: Optional

