

Lab 6.1

* In this lab, you will:

e Learn the difference between the $write, $monitor, and
$strobe statements

e Learn how strings can be passed around

e Learn how to initialize a design from a memory image

file

P

Lab 6.1

* In directory ~/lab6.1, you will find a file named "monitor.v".
[t contains an always block monitoring the changes on a
register named "R" using the $display statement.

* Add a $monitor statement that emulates the behavior of
the always block, in the same initial block that defined the
global time format. Simulate.

* Explain the differences in the reported changes.

* Replace the $display statement with a $strobe statement,
then simulate again to verify that both monitors are now
equivalent.

Lab 6.1

* In the same directory, you will find the following files:

° rom.v Model of a 16x8 Read-Only memory
e dumprom.v Dump the content of ROM
» Simulate both files: the entire content of the ROM is
unknown.
* Add a parameter, set by default to "rom.dat", to the ROM
model.

* Add the necessary statements to initialize the ROM from
the file specified by the parameter.

* Create a file named "rom.dat" and provide some values.

P e

Lab 6.1

* Simulate once more and verify that the ROM was properly
initialized.

¢ In that same directory, you will find a file named
"dump2rom.v". This module instantiates two ROMs.

* Simulate this new module along with your ROM model:
Why is the content of both ROMs identical?

Lab 6.1

* Override the ROM initialization file parameter of each
ROM instance with different filenames.

* Create these new files, then simulate again. Verify that each
ROM has the proper content.

Lab 6.1: Optional

* Modity the ROM model to use parameters to define its data
width, starting address, and ending address.

* Verity your modifications with various widths, starting, and
ending addresses.
e Try width > 32
e Try starting address > o
e Try starting address > ending address

' Lab 6.1: Optional

* Note to Verilog-XL users: At the time these notes were
written, XL 2.3.2 seemed to load memories backward if the
memory was declared with start address > end address.

. Lab 6.2

¢ In this lab, you will:
e Become familiar with disabled block
e Learn how to use the fork/join statement

P N

Lab 6.2

* In directory ~/lab6.2, you will find a file named "forever.v".
[t contains an initial block with a forever loop that waits for
aregister "R" to become '1' at the rising edge of a CLK. Once
this is detected, it should print the message "Done”, then
terminate the simulation.

* Run the simulation to verity if the model performs as
expected. Fix any problems you may find.

Lab 6.2

* In the same directory, you will find the following files:

e arbiter1.v Arbiter #1
e arbiterz.v Arbiter #2
e arbiter3.v Arbiter #3
* testarb.v Tester for arbiter

* Do not look at the source of the arbiters.

* The arbiter is supposed to provide a grant signal within
100ns of a request, and remove that same grant signal
within 10ns of the request b<e1(i)ng removed.

100ns

RQ

GT '

Y

Lab 6.2

* The tester module instantiates a single arbiter connected to
a single request/grant signal pair named "RQ" and "GT
respectively. It also contains a partially completed initial
block to test the arbiter operations.

* Complete the initial block to verify that the arbiter meets
the specification for the grant assertion and deassertion.
Use a fork/join statement.

* Have your tester produce relevant messages to help
diagnose what is going wrong with the arbiter.

Lab 6.2

* Run your test procedure against each arbiter individually
using the commands:

% ... testarb.v arbiterl.v
% ... testarb.v arbiter2.v
. Jes kAl i hikern:

e Which arbiter works?
* Which one does not?

e What is wrong with the arbiters that do not work?

e Looking at the source of each arbiter to answer the last three
questions is considered cheating...

Lab 6.2: Optional

* One of the arbiter exhibits the following behavior:

l<100ns i <10ns o

e
-< >
4

RQ
GT /XX {

.
>

* Modifty the arbiter tester to catch and diagnose this
problem.

* Which arbiter is it?

Lab 6.3

* In this lab, you will:

e Learn how to invoke a simulation with minimum,
typical, or maximum delays

e Learn that simulation results can change by using
different delay modes

Lab 6.3

* In directory ~/lab6.3, you will find the following files:

o dffv Model of a D flip-flop
e shift.v Model of a 2-bit shift-register
* testshft.v Tester for the 2-bit shift register

* The shift register has the following structure, with each
device having the specified min:typ:max delay:

Setup: (2:3:4)
Hold: (3:4:5)
Clock-Q: (1:3:4)

(1:2:3)

Clock period: 10

P e

Lab 6.3

* If you use a compiled simulator with separate compilation
and simulation commands, the +mindelays, +typdelays,
and +maxdelays options should be specified on the
simulation command.

* Run the simulation using typical delays.
* Run the simulation using minimum delays.
* Run the simulation using maximum delays.

* Explain any difference in the result.

Lab 6.3

* Can a timing problem that would occur if a device operated
at "max’" while another device operates at "min" be
detected?

e "Epilog" is a simulator from NextWave Design Automation that
performs a min/max simulation concurrently, and detects timing
problems caused by timing "spread”.

Lab 6.3: Optional

* Can you fix the design so it will work under all possible
operating conditions?

e Changing the delay values is considered cheating...

	Lab 6.1
	Lab 6.1
	Lab 6.1
	Lab 6.1
	Lab 6.1
	Lab 6.1
	Lab 6.1: Optional
	Lab 6.1: Optional
	Lab 6.2
	Lab 6.2
	Lab 6.2
	Lab 6.2
	Lab 6.2
	Lab 6.2
	Lab 6.2: Optional
	Lab 6.3
	Lab 6.3
	Lab 6.3
	Lab 6.3
	Lab 6.3
	Lab 6.3: Optional

