

Lab 3.1

* In this lab, you will:

e Learn how to use a waveform viewer
e Learn to use the # statement
e Learn how to use the @ statement

e Learn the difference between various sampling
techniques

e Identify problems caused by event ordering and
simulation startup

Lab 3.1

¢ In directory ~/lab3.1, you will find a file named "wave.v". It
contains a declaration of a reg named "R" and an initial
block with a few statements.

* Add the necessary statements to the initial block to
complete a model generating the following waveform:

| X X X
0 : . .

B e,

Lab 3.1

¢ If you run the simulation, nothing very interesting happens
because this model does not produce any output.

* To verify that your waveform generator works as expected,
add an always block that monitors any changes on the R
register then displays the new value:

always @ (R)
begin

Swrite("%0d: R = %b\n", $time, R);
end

* Simulate your model to verify that the
correct waveform is generated.

P R

Lab 3.1

* Waveforms are usually best displayed using a waveform
viewer rather than using text statements.

* Waveform viewers are not part of the Verilog language, and
as such are different for every tool you use.

* For the next lab step, please follow the instructions only for
the waveform viewing tool you will be using . These
instructions are presented on the following slides. Do not
try all waveform viewers.

e The remaining instructions for this lab are presented
immediately after the instructions for the waveform
viewing tools.

e

Lab 3.1

* IMPORTANT: Most waveform viewers require that specific
system tasks be compiled with the Verilog simulator. All
tools may not be available in all simulators (error reported
as "undefined task").

* The following instructions are by no means complete or
thorough. Detailed tool training should be obtained
through your vendor. Exploration of the waveform viewer
features is strongly encouraged.

P R

Lab 3.1: Icarus

Compile your wave.v or whatever you called it as follows. In Windows
you will need to open a Command Prompt window and go to the Icarus

folder.

iverilog -o wave wave.v

* Run it now since Icarus is a compiled verilog simulator.
VVp wave

* Notice that it prints out nothing at all. Now add the following code
inside your wave.v module
Initial gdumpvars(O,I\/IODEL);
Note: MODEL is the name of the module here

* Now compile and run again. Notice anything? A dump.vcd was
produced in the folder containing waveform data.

¢ [If running Windows Double click on the ved file and GTKwave should
open it. Now highlight MODEL and a list of signals should appear in
the Signals window. INSERT each one and you should now see them.
Highlighting one signal then using CTR-A will highlight them all,
making it faster to INSERT the signals

P R

Lab 3.1: ModelSim

* To use the ModelSim waveform viewer, you don’t need to edit the
the Verilog source file.

During simulation you must use the graphical user interface.
Create a new project and include your wave.v file

Right click on the file and select Compile -> Compile Selected
In the Transcript window type the following

vsim work. MODEL
You can also click on Simulate and then select work. MODEL
from the work library

* Notice the Object window. Add each signal from it to the
waveform window by right clicking on the signal then Add to
Wave -> Selected Signal or by highlighting and dragging the
signals into the waveform window

Lab 3.1: ModelSim

Now all the signals should be in the Waveform window but still no
signals displayed.

Now save the Wavform information by selecting the Wave window
(click on the top bar of that window)

Now select File -> Save and a window should ask you to save the default
name of wave.do. Just use that name for now. Now you will have this
info for future simulations of this module if needed.

In the Transcript Window type
do wave.do
run —all

Answer NO to the popup window and it will then run, display the
signals and bring up the .v file and show you where it stopped. You can
close that window or just click on the waveform window tab to bring it
to the front

P e

Lab 3.1: ModelSim

* Now select the Zoom Full selection tool. It looks like a
black magnifying glass

* You should now be able to see the signals

* Read the Tutorial which you can find in ModelSim by
selecting Help-> PDF Documentation -> Tutorial

Lab 3.1

* Modity the monitor always block as follows, then simulate
again. Why is the message sequence different?

always @ (posedge R) ...

* Repeat with
. Repeatwith

P N

Lab 3.1

* In the same directory, you will find a file named "sample.v".
[t contains a waveform generator on a register named "R"
and five always blocks that sample register "R" in various,
similar-looking fashions.

* Using a waveform viewer, look at the waveforms of the
sampler registers "S1", "S2", "S3", "S4", and "S5".
* Why are they different? Explain the differences.

P e

Lab 3.1: Optional

* In the same directory, you will find a file named "puzzle.v".

* Run the simulation using your simulator of choice, then
use another simulator (if available).

* Headers aside, are the simulation results different? Why?

Lab 3.2

* In this lab, you will:

e Learn how to single-step through a model execution
e Witness the sequential execution of parallel blocks

e Examine the sequence of event-driven simulation

P e

Lab 3.2

* In directory ~/lab3.2, you will find a file named "model.v".
[t contains the source for the example we have just walked
through.

* Source-level debuggers are not part of the Verilog
language, and as such are different for every tool you use.

* For the next lab step, you will need to discover how your
particular simulator can do this.

P e

Lab 3.2: Verilog XL

* Instruct the simulation to drop into the interactive
command interpreter by using the '-s' option:

% verilog -s model.v

* Step through the code by using the ')’ (comma) command
at the "C1>" prompt.

* To exit, press Control-D or type "sfinish;".

Lab 3.2: VCS

* To single step through code in VCS, invoke the VCS GUI
environment. The following command line simulates and
opens the VCS GUI debugging environment:

% vecs -line +cli+3 Iﬁ_li moi:l
 Note: If you see a linkage error, remove the +cli+3 optlon Your version of

VCS may not support this option.

* To open the Hierarchy browser and the Source Code
viewer, use the button bar and click on the "Hierarchy" and
"Source” buttons, respectively.

— xes

11 Interactive

Lab 3.2: VCS —

e With the middle mouse R

button, drag the box
named "MODEL" from the
Hierarchy window to the

Source Code window.
=

Film Edd Diepber Wrxowe

ICAENEN DNl i

Signal Select

Scope: MODEL V¥ariables:2
CLK

CNT[3 1]

FOORA]

1.

f IFirter

Lab 3.2: VCS

* To single step through the code in the Source Code window,
use the yellow arrow button. When you are done, click the

Exit button in the main menu.
— IDGLE []

Film Edd [umphbwy A radoea

[EAENENDN D T P

-3 Biwwskal HOOEL!
1

iz
L
1

e
Fie [h — aumpe woom [[on [cormo
Tirepe 8 |T|m Fired _ [+ [+

. Lab 3.2: ModelSim

* To single step through the code in the Source window, use
the "Step" button.

	Lab 3.1
	Lab 3.1
	Lab 3.1
	Lab 3.1
	Lab 3.1
	Lab 3.1
	Lab 3.1: Icarusentor
	Lab 3.1: ModelSimr
	Lab 3.1: ModelSimMentor
	Lab 3.1: ModelSimMentor
	Lab 3.1
	Lab 3.1
	Lab 3.1: Optional
	Lab 3.2
	Lab 3.2
	Lab 3.2
	Lab 3.2: Verilog XLNortel
	Lab 3.2: VCSNortel
	Lab 3.2: VCSNortel
	Lab 3.2: VCSNortel
	Lab 3.2: ModelSimMentor

