

| b 7 |

* In this lab, you will:

e Learn to recognize common mistakes with compiler
directives

e Learn the difference between the if statement and the
ifdef directive

e Learn how to create reconfigurable models

P e

| b 7 |

¢ In directory ~/lab7.1, you will find a file named "syntax.v".
[t contains a model that initializes a memory with an
incrementing value, then displays the sum of all values
stored in the memory.

* Compile the file and fix any syntax errors you may find.
* Ensure that the sum is 136.

| b 7 |

* In the same directory, you will find the following files:

° rom.v Model of a generic 16xN-bits ROM
e dump2rom.v Dump the content of 2 ROMs

e romi.dat Data file for ROM#1

e rom2.dat Data file for ROM#2

* These files are similar to those used during a previous lab.
However, the ROM uses "define'd symbols to determine the
width, depth, and initialization file of the ROM instead of
parameters.

| b 7 |

* Simulate both source files, specifying the file "rom.v" first.
Try a second time with the files specified in the opposite
order. Why is the compilation order-dependent?

* Look at the content of "romi.dat”". Why is the reported
content of the first ROM incorrect?

* Optional: Modify the ROM model to use parameters
instead of "define'd symbols.
e Make the necessary modifications to the ROM dumper as well.
e Simulate to verify the correctness of the model.

| b 7 |

* In the same directory, you will find the following files:
e stack.v Model of a stack
e teststck.v Stack tester

* Both the tester and the stack contain debug display
statements that were left behind to help diagnose a
problem. You must now get rid of them.

* One option would be to delete these statements outright.
However, you may need them in the future. It is probably
best to leave them in and use if statement to jump over
them if the debug mode is not set.

| b 7 |

* Edit the file "stack.v" and define a register named DEBUG,
initialized to 'o'.

* Embed all debugging display statements inside an if

statement: if (DEBUG) begin
<display-statement>

end

* Run the simulation to verify that it now executes quietly.

» Edit the file "stack.v" again, and initialize the DEBUG
register to '1. Simulate again to ensure that all messages
came back.

P e

| b 7 |

* Turning the debug mode on required editing a file. Using a
"define symbol would allow you to define the DEBUG flag
on the command line.

¢ If you plan on doing the optional part of this lab, make a
backup copy of the file "stack.v" right now.

 Edit the file "stack.v" again, replacing the "if (DEBUG) ..."
with ifdef/endif directives.

e You can take out the entire initial block for the $monitor statement

o ~ifdef DEBUG

initial ...

“endif

| b 7 |

* Run the simulation to verify that it now executes quietly
again.

* Simulate again, this time defining the "DEBUG" symbol on
the command line, to ensure that all messages came back.

e Ifyou use a compiled simulator with different commands for
compilation and simulation, the +define+ DEBUG option must be
specified on the compilation command.

P R

Lab 7.1: Optional

* The goal of this optional section is to measure the
performance difference between if statements and ifdef
directives.

» Edit the file "teststck.v' and add a "repeat (50000)"
statement around the outer for-loop statement.

* Simulate the file "stack.v" with the debug messages turned
off. Note the CPU time required.

» Repeat with your back-up copy of the file "stack.v" (which
uses if statements). Compare the CPU time required.

10

P e

[D 2

¢ In this lab, you will:
e Learn how to specify simulation files using the -y option
e Learn how to specify simulation files using the -v option

e Learn how to manage simulation configurations using
manifest files and the -f option

12

[D 2

* In directory ~/lab7.2, you will find the following files:
e test_add.v Testbench for 8-bit adder
e addbeh.v Behavioral 8-bit adder
e addstr.v Structural 8-bit adder

faddbeh.v Behavioral full-adder

e faddgate.v Gate-level full-adder

* There are three possible 8-bit adder model configurations
that can be simulated:
e #1: Behavioral
e #2: 8-bit structural + 8 x behavioral full adder
e #3: 8-bit structural + 8 x gate-level full adder + ? gates

13

P e

[D 2

* Try simulating all files using the command:

e V)

* Each configuration of the 8-bit adder requires a different
command line to invoke Verilog with the proper files.

* The format of the command line will be of the form:

% ... test_add.v <config>

where <config> is the sequence of command-line options
that will use the appropriate configuration.

14

P e

[D 2

* The simplest way to specify a particular configuration is to
explicitly list all the required filenames on the command
line.

* To simulate configuration #1, the behavioral description of
the 8-bit adder is required. This description is fully

contained in the file "addbeh.v". Use the command:
% ... test add.v addbeh.v

15

P e

[D 2

* Try to simulate the structural description of the 8-bit adder
using the command:

% ... test add.v addstr.v

* Verilog complains that it is missing module "FADD". The
behavioral description of a full-adder can be added to the
simulation by adding the filename "faddbeh.v" to the

command line:
% ... test add.v addstr.v faddbeh.v

16

P R

| b 7

* Configuration #3 calls for using the gate-level full-adder. Try to
simulate this configuration by specifying the name of the file
containing this model:

% ... test add.v addstr.v faddgate.v

* Several different modules are now missing: the models for the
gates used to implement the gate-level full-adder. The name of
the files containing their model could be added to the command
line. However, in a real-life design where hundreds of different
gates are used, it would be impractical to have to specify the
names of hundreds of files on the
command line.

17

[D 2

¢ Ifyou look into the subdirectory "gates”, you will see a
collection of files that contain models for individual gates.

* The -y and +libext options can be used to instruct Verilog
to scan a directory for files that contain the missing
models.

* Simulate configuration #3 using the following command:

% ... test add.v addstr.v faddgate.v \
-y gates +libext+.v

18

[D 2

* Ifyou look into the file "gates/gates.v", you will see a
collection of models for individual gates.

* The -v option can be used to instruct Verilog to scan a file
that contains the missing models.

* Simulate configuration #3 using the following command:

% ... test add.v addstr.v faddgate.v \
-v gates/gates.v

* The difference between the -y and the -v option is that the
former scans directories, the latter scans files.

19

e

[D 2

¢ It quickly becomes an overwhelming task of remembering
the command-line options that make up a particular
configuration. Not to mention typing the same thing over
and over.

* Command-line options can be put in a file; Verilog can
then be instructed to read this file. The content of the file
is interpreted as if it had been typed on the command line
itself.

* Command-line option files are specified using the -f
option.

20

[D 2

* Command-line option files can be used to create
configuration specifications, or manifest files.

* (Create three manifest files "confi.mft", "conf2.mft", and
"conf3.mft", each specitying the required command-line
options to simulate configurations #1, #2, and #3 of the 8-
bit adder, respectively.

* Simulate the three configurations using the commands:

% ... test add.v -T confl.mft
% ... test add.v -Tf conf2.mft
% ... test add.v -Tf conf3.mft

21

P e

Lab 7.2: Optional

* Go back through the previous steps of this lab and try
various ordering of the command-line options. Does it
make a difference?

* Modify the "conf3.mft" manifest file to use the -v option to
locate the missing modules.

* What happens if you forget to specify the -v option in front
of the file "gates/gates.v"?

22

Lab 7.2: Optional

* Create a subdirectory in the current working directory,
then change your working directory to this new
subdirectory.

* Try to simulate any of the configurations from your current
location, referencing the manifest files in "..". Why isn't it
working?

23

. Lab 7.3

¢ In this lab, you will:
e Learn how to write a behavioral testbench
e Learn how to produce meaningful results

25

P R

Lab 7.3

* In directory ~/lab 7.3, you will find a file named "drive.v". It
contains a model of a disk drive that performs operations
with variable seek times.

* The disk drive has 16 random-access 16-bit sectors on each
of 8 cylinders. Sector 7 of each cylinder contains a read-
only bitmap, generated at power-up, of good sectors in that
cylinder.

* Marketing believes that this 240-byte disk drive will be a
commercial success if the average seek time is less than
1ons with the maximum seek time less than 15 ns.

26

Lab 7.3

* The read and write operations, as well as the nominal seek time
for each operation, are described by the following timing
diagram:

SECT [X
CYL [X
[X
W

DATA_IN
WRITE

GO

DONE
DATA_OUT

* All inputs are sampted-attherisingedge
of "GO".

~N S KX
LAttt G D <

Write

Seek Seek

27

Lab 7.3

* Write a testbench that performs 25 read operations and 25
write operations, as fast as possible:

GO = 1°b1;
@ (negedge DONE);

GO = 1°b0;
@ (posedge DONE);

* For each operation, report seek time.

* At the end of the test sequence, report the maximum and
average seek times

e Will this disk be a commercial success?

28

Lab 7.3: Optional

* Modity your testbench to verify that:
e Sector 7 of each cylinder is read-only
* Good sectors are read-write
* Bad sectors are indeed bad

29

Lab 7.4

¢ In this lab, you will:
e Learn how to write simple bus-functional models
e Use bus-functional models to test a device

33

P e

Lab 7.4

¢ In directory ~/lab7.4, you will find a file named "testdffs.v".
[t contains a partially completed testbench for a scannable
D flip-flop.

* The testbench module already contains the proper

instantiation and signal declarations. It also contains a

partially completed test procedure with the RESET and
DATA_IN tasks.

32

P N

Lab 7.4

* Add an always block generating a free-running clock on
register CLK with a period of 100 ns. The clock should start
with the low half-period first (i.e. 'o' for the first 50 ns).

* In the module, add a task abstracting the scan-in
procedure. Cutting-and-pasting from the DATA_IN task is
legal and strongly encouraged.

* Add the necessary calls to the new SCAN_IN task to fully
test the D flip-flop.

33

Lab 7.4

* The directory also contains files "dffs1.v", "dffs2.v", and
"dfts3.v". Each contain a model of a scanable D flip-flop.

» Using you testbench, determine which ones work and
which ones do not by simulating each model, one at a time.

e Looking at the source code of the flip-flop models to answer this
question would definitely be cheating!

34

P N

Lab 7.4 : Optional

* Currently, all test tasks check the Q and Qb outputs after
the propagation delay time after the rising edge of the
clock. However, the output of a flip-flop must remain
stable from that point until the next rising edge of the
clock.

CLK

Q/Qb XK NANA

' Needed

Now

35

P

Lab 7.4 : Optional

* Add an always block that checks that the Q and Qb
outputs remain stable after the clock-to-Q delay, until the
next rising edge of the clock.

* Simulate the three flip-flop models again. Are there any
flip-flops that no longer meet their specification?

36

	Lab 7.1
	Lab 7.1
	Lab 7.1
	Lab 7.1
	Lab 7.1
	Lab 7.1
	Lab 7.1
	Lab 7.1
	Lab 7.1
	Lab 7.1: Optional
	Lab 7.2
	Lab 7.2
	Lab 7.2
	Lab 7.2
	Lab 7.2
	Lab 7.2
	Lab 7.2
	Lab 7.2
	Lab 7.2
	Lab 7.2
	Lab 7.2
	Lab 7.2: Optional
	Lab 7.2: Optional
	Lab 7.3
	Lab 7.3
	Lab 7.3
	Lab 7.3
	Lab 7.3
	Lab 7.3: Optional
	Lab 7.4
	Lab 7.4
	Lab 7.4
	Lab 7.4
	Lab 7.4
	Lab 7.4 : Optional
	Lab 7.4 : Optional

