

[D 1

* In this lab, you will:

e Learn how to instantiate modules using named and
positional connection

e Become familiarized with the port connection rules
e Learn how to create hierarchy in a top-down fashion
e Learn how to control inout ports

[D 1

* In directory ~/labs.1, you will find the following files:

e adder.v 32-bit adder
e sub.v 32-bit subtractor
® Noop.v Top-level model

* The top-level model contains two 32-bit regs ("A" and "B")
and one 32-bit wire ("Z"). It also contains an initial block
that provides various values to "A" and "B", then checks the
value on "Z" against an expected value.

[D 1

* Add the necessary statements to instantiate and connect
the adder and subtractor to effectively create a "no-
operation” structure solving the equation.

* It can be performed using the following structure:

A
B

[D 1

* Compile, then simulate your model to verity that your
structural model is correct. The code provided will make
the necessary checks.

* Verity that the correctness of your model does not depend
on the order in which the filenames are specified or
compiled.

* If you used positional connection specification, modify
your instantiations to use named connection (or vice-
versa).

[D 1

* In the same directory, you will find a file named "rules.v". It
contains two modules, one instantiating the other. The
lower-level module has three pins: an input, an output, and
an inout.

* The top-level module contains a declaration for a reg
named "R" and a wire named "W".

* In the top-level module, try connecting the input pin of the
lower-level module to the reg "R". Compile to verity if that
is correct. Repeat with the wire "W". Repeat for the output
and inout pins.

[D 1

¢ Find a combination of connections to "R" and "W" that will
not cause any syntax errors.

* In the lower-level module, try to declare the input pin as a
reg. Compile to verity if it is acceptable. Repeat with the
input pin declared as a wire. Repeat with the output and
inout pins.

e Fill in the following table with the allowed pin connections

(wire, reg, bath):
Direction Upper—level Lower-level

Input
Output

Inout

[D 1

* In the same directory, you will find a file named "design.v".
[t contains an always block modeling a stack and an initial
block testing the stack operation for correctness.

* Create a second module named "STACK" in another file
and move all statements modeling the stack into this new
module. Provide all necessary pins.

* Replace the original always block in the original module
with an instantiation of the new STACK module. Simulate
the new structure to verify that correctness is maintained.

e

Lab 5.1: Optional

* Modify the model of the stack to use a single inout pin
instead of using separate pins for the new and top-of-stack
values.

* Whenever "POP" is 1, the stack should drive the inout pin.
Whenever "PUSH" is 1, the outside has ownership of the
inout pin. Nobody should drive this pin when both control
signals are '0'.

* Modify the top-level design module to match the new
behavior.

* Simulate to verify the correctness of operation.

Lab 5.2

¢ In this lab, you will:
e Learn how to use the ‘timescale directive

e Witness the effects of different timescales on identical
models

e Get familiarized with the $time and $realtime tasks
e Learn how to use the $timeformat task

Lab 5.2

¢ In directory ~/labs.2, you will find the following files:
e inverter.v Model of an inverter
* testinv.v Inverter tester

* Compile and simulate both files at the same time, but specified
in the following order

testinv.v 1nverter.v

r ame) % verilog testinv.v inverter.v

» Repeat with the file specified in the opposite order

inverter.v testinv.v

* Why is the order suddenly significant?

Lab 5.2

* Add the following ‘timescale directive to the inverter
model, then verify that the compilation order is no longer
significant.

“timescale 1ns/1ns

* The inverter tester reports two pieces of information:

e The rise delay
e The fall delay

Lab 5.2

e Fill in the following table for various timescales on the
tester and inverter modules:

Tester Inverter | Rise Fall
Ins/1ns Ins/1ns
Ins/1ns Ins /100ps
Ins/1ns Ins /10ps
Ins/1ns Ins/1ps
Ins /1ns 1ps/1ps
Ins /1ps Ins /100ps

1ps/1ps Ins /100ps

Lab 5.2

* Edit the tester module and make the following
modifications:
e Add a $timeformat statement to the initial block.

e Modify the $write statements to display the fall and rise delay values
using the global time format (%t) rather than a floating-point
format.

* Run the simulation with the following timescale pairs. Are

the reported del%ys different from before?
ester Inverter
Ins/1ns Ins /100ps

1ps/1ps Ins /100ps

Lab 5.2

* Edit the tester module and make the following
modifications:
* Replace the calls to the $realtime task by calls to the $time task.

* Run the simulation with the following timescale pairs. Are
the reported delays different from before?

Tester Inverter
Ins/1Ins Ins/1Ins
Ins/1Ins Ins /100ps

Lab 5.3

* In this lab, you will:

e Learn how to use parameters
e Learn how to use parameters to specify delays
e Learn how to use parameters to specify constants

e Learn how to turn a size-hardcoded model into a size-
generic model

P R

Lab 5.3

* In directory ~/labs.3, you will find the following files:
e inverter.v Model of an inverter

e testinv.v Tester for the inverter

* The inverter tester reports the rise and fall delays of the
inverter. Run the simulation and note the rise and fall
delays.

* The rise and fall delays are hardcoded in the inverter
model. Modity the inverter model to have the delays
specified using parameters. Use the current hardcoded
delay values as default and declare the rise-delay parameter
first.

Lab 5.3

* Simulate your new inverter without any modifications to
the tester module. Ensure that the delays are as before.

* Modify the tester module to override the rise and fall
delays, using the positional notation:

INVERTER #(4.5, 1.6) DUT(...);

* Simulate with the new tester module. What are the delays
of the inverter now?

P e

Lab 5.3

* Delete the override specification for the fall delay, then
simulate again. Make sure only the rise delay was
overridden.

INVERTER #(4.5) DUT(--..);

* Is it possible to override only the fall delay parameter if it is
declared second?

* Change the order in which the parameters are declared in
the inverter module then simulate again. Which parameter
got replaced?

P

Lab 5.3

* Modify the parameter override from positional to using a
defparam statement (using the proper names for your

parameters): defparam DUT.RISE

DUT . FALL

* Simulate and note the rise/fall delays.

* Change the order in which the parameters are declared,
then simulate. Any changes?

* Can you specify an override value for the rise-delay
parameter only? For the fall-delay parameter only? How?
Verity your hypothesis.

Lab 5.3

* Parameters need not be used only for user-redefinable
values. They can be used to define symbolic constants to
make the code easier to understand.

* In the tester module, add three parameters defined to 0.8,
1.0, and 1.2 to represent scaling factors for best, typical, and
worst-case operating conditions, respectively.

* Modify the tester to specify worst-case rise delay and best-
case fall delay for the inverter. Simulate to verify the
correctness.

defparam DUT.RISE = 4.5 * WORST,

DUT . FALL 1.6 * BEST;

P R

Lab 5.3: Optional

* In the same directory, you will find the following files:
e stack.v Model of a stack
e teststck.v Stack tester

* The model of the stack is currently hardcoded with an 8-bit
word width and a 4-word depth.

* Modity the stack model so parameters can be used to resize
the width of the words and its depth.

* Modify the stack tester to be able to test any configuration
of a stack using two parameters to define constants
specifying the width and depth of the stack to be tested.

Lab 5.3: Optional

* You may want to use the $random task that returns a 32-bit
random number to initialize the test pattern array.

* Use the parameters of the tester to configure the
instantiated stack model.

* Simulate your modifications with a few combinations of

width and depth.

e Can you make it work with a width > 327

Lab 5.4

* In this lab, you will:

e Learn how to use primitives

e Compare modeling using primitives and behavioral code
e Experiment with primitive delays

e Learn how timescales affect primitive delays

Lab 5.4

* In directory ~/labs.4, you will find a file named "testnot.v".
It is similar to the inverter tester previously used, but it uses
a 'not" primitive instead of instantiating an inverter. The
inverter rise and fall delays are specified as hardcoded
values.

* Run the simulation. What are the delay values?

* Modify the timescale to "100ps/10ps” then simulate again.
What are the delay values? How does that compare to
using an inverter module rather than an inverter primitive?
You may want to refer to the previous lab.

Lab 5.4

* In the same directory, you will find a file named
"testdsgn.v'. It verifies the following design for correctness:

ADDR
BUS
4 001
Y 3y
101
4,

P R

Lab 5.4

* You will also find files named "rfilebeh.v" and "rfileprm.v"
that contain identical module definitions for the previously
described (partial) register file.

* In the first file, complete a behavioral description of the
design, using two continuous assignments and the "?:"
operator. Use the provided tester module to determine if
your model is correct. Note how long it takes you to
complete this step.

* In the second file, complete a gate-level description using
primitives. Simulate to verify correctness and note how
long it takes you to complete this step.

Lab 5.4

* Compare the simulation performance of both descriptions
by simulating each one separately and noting the CPU time
required.

* Whoops! Sorry! There was an error in the specification!
Please modify both models, as follows:
e The address of register "B" is "110" instead of "101".
e Add an extra bit of address.

* Simulate using the file "testeco.v" instead of "testdsgn.v" to
verify your changes.

* Which model was quickest to write/modify?
* Which model simulated the fastest?

P R

Lab 5.4

* For most people, there isn't a significant time difference
between writing the behavioral model and writing the
gate-level model.

* However, when comparing writing times, you have to
remember that the time required to write the behavioral
model probably included the time necessary for you to
understand in detail the desired functionality. Gaining this
understanding may have required some debug cycles.
When you started writing the gate-level model, you already
had a very good idea of what was required and did not have
to "debug” your understanding. You only had to debug
your model.

P e

Lab 5.4

* In the same directory, you will find a file named "sample.v".
It is a slightly modified version of the (now familiar)
module that contains various sampling procedures.

* A sampling procedure using a buffer primitive has been
added. Compare the resulting waveforms with the others.
Explain the differences.

	Lab 5.1
	Lab 5.1
	Lab 5.1
	Lab 5.1
	Lab 5.1
	Lab 5.1
	Lab 5.1
	Lab 5.1
	Lab 5.1: Optional
	Lab 5.2
	Lab 5.2
	Lab 5.2
	Lab 5.2
	Lab 5.2
	Lab 5.2
	Lab 5.2
	Lab 5.3
	Lab 5.3
	Lab 5.3
	Lab 5.3
	Lab 5.3
	Lab 5.3
	Lab 5.3
	Lab 5.3: Optional
	Lab 5.3: Optional
	Lab 5.4
	Lab 5.4
	Lab 5.4
	Lab 5.4
	Lab 5.4
	Lab 5.4
	Lab 5.4
	Lab 5.4

