

Lab 8.1

* In this lab, you will:

e Learn how to write CPU bus-functional models

e Learn how to perform read and write cycles using CPU
bus-functional models

P

Lab 8.1

¢ In directory ~/lab8.1, you will find the following files:
e thing.v Model for the "thing"
e testthng.v Partial testbench for the "thing"

* The testbench module instantiates a THING that has a
CPU interface and an interrupt output line.

CPU @

THING

— Interrupt

Lab 8.1

* The CPU interface uses a 16 MHz i386sx bus:

e There can be o to any number of wait states

e Timing values are in nanoseconds

Read Write

P2 1 P11 P2 1 P11 P2 1 P11 P2 1 QLI P2 1 QLI P2 1 P11 P21 @11 P2 1 D1 |

LK
S mlE e e m e e e e e e
ADDR [X X
LN A LN 4,
ADS / -
<> Wait State &>
RW < > Wait State
READY (19) (4 . — (19) (4 ; _
; =i 4 i—
DATA e IS S
9 6

Lab 8.1

* Pin description from the THING's perspective

Name Direction Width Description
CLK input 1 Clock
ADDR input 8 Address
ADS input 1 Address strobe
RW input 1 Read when asserted low
READY output 1 Data ready or data accepted. Introduces wait cycles.
DATA inout 8 Data
* Register address map Address | Register
0 Status
1 Mask

Lab 8.1

* Interrupts are generated whenever some condition occurs.
In the real world, the THING would have other I/Os to
detect these conditions. However, in this case, conditions
occur spontaneously.

* The THING has three status bits in a read-only register at
address o indicating which condition (A, B, or C) occurred.

Status register: | - [- [- | - | - [A|B|C
7 0

* Whenever one of the status bits is set, the
interrupt output is asserted to '1'.

P e

Lab 8.1

* The THING has a second register at address 1 to mask
interrupts. If the mask bit is set, the corresponding status
bit does not cause the interrupt output to be asserted.

Mask register: | - | = | = | = | = |A|B|C
7 0

Lab 8.1

* The test procedure follows these steps:

e While not all conditions have occurred:
Verify that interrupt is cleared
Wait for the interrupt
Identify which condition caused the interrupt
Mask the interrupt for that condition

- The interrupt should go away

* Review that the test procedure implements this algorithm.
e Add any steps that may be missing.
* Your task is to complete the READ and WRITE tasks
corresponding to the timing diagram.

¢ In what order and what time did the
conditions occur?

P e

Lab 8.1 : Optional

* Write a model of a 256x8bit RAM that could interface
directly with the CPU.

» Using the procedures defined in the previous exercise, test

your memory model by instantiating it in place of the
THING.

. Lab 8.2

¢ In this lab, you will:
e [.earn how to use hierarchical names

e Learn how to bypass interfaces for additional visibility

11

Lab 8.2

* In directory ~/lab8.2, you will find the following files:
e testfsm.v Testbench for FSM
o fsm.v Model of an FSM

* The FSM implements a simple synchronizer with four
states: out-of-sync, syncing, in-sync and losing-sync. How
the FSM transitions between these states is unimportant
currently.

* Your task is to have the testbench display the current state
of the FSM at every rising edge of the clock using a
hierarchical name.

12

P N

Lab 8.2

* Add an always block in the testbench module that displays
the current value of the state register at every rising edge of
the clock.

* Simulate your model. What is the state transition sequence
of the FSM?

* Modity the testbench to force the state machine to a
different state during its execution.

* Verify that the state transition sequence has been
successfully modified.

13

Lab 8.2 : Optional

* The state encoding for the FSM is as follows:

e 000ut of sync

e 01 Syncing
e 11 Insync
10 Sync loss

e Write a function that translates a state code into a
meaningful string.

» Using this function, modify the trace message to display
the name of the state instead of the code.

* Simulate to verify that the names are properly translated
then displayed.

14

P

Lab 8.3

* In this lab, you will:

e Learn how to back-annotate a gate-level simulation
using an SDF file

e Learn how to interface to a 3rd-party FPGA model

e Learn how to program an LMG SmartCircuit FPGA
model

e Learn how to alternate between simulation
configurations

16

Lab 8.3

* In directory ~/1ab8.3, you will find the following files:

thing.rtl.v
thing.gate.v
thing.sdf
thing.xnf
thing.rpt
xC4005_84.pl

RTL model for the THING

Gate-level model for the THING
Post-PPR SDF file for gate-level model
P&R XNF netlist for Xilinx XC4005-84
Xilinx PPR report for "thing.xnf"

PERL script to produce pin connections

* The gate-level model uses Xilinx XC4000 primitives (or
"gates"). An ASIC implementation would simply use a
different set of gates - the full-timing gate-level simulation
process remains the same.

17

Lab 8.3

» Simulate the RTL (synthesizable) model of the THING
using the testbench previously written in Lab 8.1. Note
that the interrupts may occur in a different order.

e Ignore any hold violation error messages you may have.

e At what time(s) is the interrupt asserted?

%/1lab8.1/testthng.v thing.rtl.v

 Edit the testbench (you may choose to copy the file
../lab8.1/testthng.v in this directory), and add the following
statements at an appropriate location:

~“1fdet SDF
initial $sdf _annotate("thing.sdf", DUT);

“endif

18

Lab 8.3

* Try to simulate the RTL model with SDF back-annotated
delays using the command below.
e Why is an error produced?

% ... +define+SDF ._./lab8.1/testthng.v thing.rtl.v

* Simulate the gate-level model without SDF back-annotated
delays using the following command (ignore any timing
violation for the time being):

e At what times are the interrupts asserted?
e How does it differ from the RTL model? Why?

%/lab8.1/testthng.v thing.gate.v \
-y ../xc4000e +libext+.v

19

P R

Lab 8.3: Optional

* LMG SmartCircuit FPGA models provide programmable models
of the physical FPGA part. All physical pins on the device can be
found on the module interface. It is necessary to correlate
logical pins (in your design) with the physical pin (on the
device).

* The file thing. rpt contains the pin assignment from the P&R
tool. However, the assignments are described with respect to the
physical pin number while the FPGA model pins are named to
describe their functionality.

* Refer to the LMG documentation for the FPGA model found in
the following file to identify the name of the pin that
corresponds to a physical pad.

../Imc/templates/xc4005e 84/xc4005e 84.txt
20

Lab 8.3: Optional

* For example, RST was assigned to pin #60 which is named "CSo"
in the LMG model. Therefore, the proper connection for the RST

pin would be:

* Manually completing the pin connections between the FPGA
and the access module is a tedious and error- prone process that
would have to be repeated after every FPGA P&R. Writing a
script to perform the job is a good time-saving investment.

* The file "xc4005_84.pl" contains a PERL script that parses a PPR
report file and produces the corresponding Verilog interface
model
for the LMG xc4005_84 model.

21

P e

Lab 8.3: Optional

* Generate the interface model by executing the following
command:
% xc4005 84.pl thing.rpt >thing.fpga.v

* The file thing.fpga.Vv contains an instantiation of a
LMG SmartCircuit 84-pin XC4o005E FPGA. This model is a
generic model that needs to be programmed using an XNF
file containing P&R and delay information.

* To program the FPGA model, create a Model Command
File named thing.mcT containing the following line:
load -source thing.xnf

22

Lab 8.3: Optional

* To select the]faroper timing version of the FPGA and to identify

the MCF file for configuring the FPGA model, add the following
defparam statement to the FPGA thing model (or the PERL

SCript). defparam
LMC.TimingVersion ""XC4005E_84-3",

LMC.SCFFi1le “"thing.mcf";

* Simulate the FPGA model using this info:

%/lab8.2/testthng.v thing.fpga.v -y \
../Imc/speciral/cds/verilog/swift +li1bext+.v

e At what time(s) is the interrupt asserted?

e How does it differ from the
gate-level+SDF model?

23

Lab 8.3: Optional

* Benchmark the simulation performance of the various
THING models:
e Behavioral (from Lab 8.1)
e RTL
e Verilog gate
e LMG SmartCircuit model

* Which one would be best to debug a testbench?

24

	Lab 8.1
	Lab 8.1
	Lab 8.1
	Lab 8.1
	Lab 8.1
	Lab 8.1
	Lab 8.1
	Lab 8.1
	Lab 8.1 : Optional
	Lab 8.2
	Lab 8.2
	Lab 8.2
	Lab 8.2
	Lab 8.2 : Optional
	Lab 8.3
	Lab 8.3
	Lab 8.3
	Lab 8.3
	Lab 8.3
	Lab 8.3: Optional
	Lab 8.3: Optional
	Lab 8.3: Optional
	Lab 8.3: Optional
	Lab 8.3: Optional

