

Lab 10.1

¢ In this lab you will:

« Learn how to infer resetable flip-flops with fan-in logic

@ In directory labio.1 you will find the following files:
o Ir shift.v Loadable shifter (incomplete)
e tb.v Self-checking testbench

Lab 10.1

© The 4-bit shifter has the following functions:

Reset to "0000”, if "RST" is asserted

Shifts right, shifting in 'o’, if "RT" is asserted
Shifts left, shifting in 'o’, if "LF" is asserted
Parallel loads all 4 bits in "I”, if "LD" is asserted
Stays in the same state, if no control is asserted

The content of the shifter is available at all times on the
output "O"

All control inputs are asserted HIGH and are guaranteed to be
mutually exclusive (i.e. "RST" and "LD" cannot be asserted at the
same time)

The clock is active on the rising edge

Lab 10.1

© Add the necessary statements in the module to complete a
synthesizable functional description of the shifter.

© Verity the correctness of your description by simulating the
decoder model using the provided testbench.

Ui th o brishiftav

© Once the functionality is declared correct, synthesize your
design.

¢ Compare the performance of your design with that of others and
with the proposed solution.

« Compare the description of your design
with another and try to understand why
one is faster and/or smaller.

Lab 10.2

¢ In this lab you will:

e Learn how to allocate fan-in and decode logic in various always
blocks

¢ In directory lab1o.2 you will find the following files:
» edge_detect.v Edge detector (incomplete)
e th.v Self-checking testbench

P e

Lab 10.2

¢ This circuit monitors the input I for rising and falling
edges. This circuit asserts the output "RISE" for 1 clock
cycle if a rising edge is detected, and the output "FALL" if a
falling edge is detected.

CkE Pl L FL LR T R L
|] | [

RISE
FALL

P e

Lab 10.2

© Use the following architecture for the circuit.

| RISE
| FALL

CK

© Before starting coding your RTL code, circle the logic that
can be implemented in a single always block, then write
the RTL accordingly.

Lab 10.2

© Add the necessary statements in the module to complete a
synthesizable functional description of the edge detector.

© Verity the correctness of your description by simulating the
decoder model using the provided testbench.

% ... tb.v edge detect.v

© Once the functionality is declared correct, synthesize your
design.

¢ Compare the performance of your design with that of others and
with the proposed solution.

« Compare the description of your design
with another and try to understand why
one is faster and/or smaller.

Lab 10.2: Optional

¥ Modify your description to eliminate the output decoder
and provide the RISE and FALL output directly from flip-
flops.

10

Lab 10.3

¢ In this lab you will:

e Learn how to model a Finite State Machine

¢ In directory lab1o.3 you will find the following files:
o gray.v Gray counter (incomplete)
e tb.v Self-checking testbench

12

Lab 10.3

© A gray counter cycles to a sequence where only a single bit
changes between states.

« Circuits with gray-coded inputs are glitch-free and consume less
power.

© Describe an asynchronously resetable 3-bit gray counter as
a state machine.
 Reset is active high.

 Clock is active on the rising edge.

© Any gray sequence is acceptable and any state can be the

reset state. 000 110
E I . 001 111
o Xamp (- gray Sequence. 011 101

010 100
13

Lab 10.3

© Add the necessary statements in the module to complete a
synthesizable functional description of the gray counter.

© Verity the correctness of your description by simulating the
decoder model using the provided testbench:

% ... tb.v gray.v

© Once the functionality is declared correct, synthesize your
design.

¢ Compare the performance of your design with that of others and
with the proposed solution.

« Compare the description of your design
with another and try to understand why
one is faster and/or smaller.

14

Lab 10.4

¢ In this lab you will:

« Learn how to deal with multiple clock domains

¢ In directory lab1o.4 you will find the following files:
o fifo.v FIFO (incomplete)
e tb.v Self-checking testbench

16

P R

Lab 10.4

© Describe a 3-deep FIFO where 8-bit input data is written on
the rising edge of CKI, and then if the FIFO is empty, the
input data becomes immediately available on the output.

© The output data is consumed and the next available word is
presented on the output after a rising edge on CKO.

® Provide two status flags: "MT" and "FL" that indicate if the

FIFO is empty or full, respectively.
« When "MT" is asserted (HIGH), the output value is invalid.

« Writing a new value when "FL" is asserted (HIGH) yields
unpredictable results.

¥ Reset is asynchronous and active HIGH.

17

Lab 10.4

¢ Example of a sequence of operations:

Input CKI | CKO Output | MT FL
=0/ O/l X bl 0
0 Gi BBV A e |] O O
1 ~] 0o/ O | O O
2 AP O/l 0] O 1
aEale haa 1 o 0
3 N Ol g 01
— g/ 0 2 |] O O
S ayale e 3 | O O
/L) 0 X 1 0

18

P e

Lab 10.4

© Use the following architecture:

Data-in Data-out

Clock-out

19

Lab 10.4

¢ If you have difficulty figuring out how to implement the
"MT" and "FL" flags, read the hint below.

The flags are much easier to compute
If you implement an extra location in
the FIFO even though it is not really
“available”.

20

Lab 10.4

¥ To complete a synthesizable functional description of the FIFO,
add the necessary statements in the module.

© Verity the correctness of your description by simulating the
decoder model using the provided testbench:

s thov Eafo v

© Once the functionality is declared correct, synthesize your
design.

¢ Compare the performance of your design with that of others and
with the proposed solution.

« Compare the description of your design
with another and try to understand why
one is faster and/or smaller.

21

Lab 10.5

* In this lab you will:

e Become familiar with setting constraints
e See how constraints affect the synthesis outcome

e Witness how operating conditions affect timing
estimates

e Examine timing reports

23

Lab 10.5

¢ In directory ~/lab1o.5, you will find the following files:

e control.v

* Follow the remaining instructions that pertain to the
synthesis tool you are using.

24

P e

Lab 10.5: Synopsys

e Start the command-line interface of Synopsys using the
following command:

% dc_shell

* Read the design using the command:

dc_shell> read -format verilog control.v

* Save the current state of the design by using the command:
dc_shell> write

25

Lab 10.5: Synopsys

* Compile the design with no constraints, then examine the
final timing and area results:

dc_shell> create clock -period 10 CLK
dc_shell> compile

dc_shell> report _timing

dc_shell> report _area

* Add a model for the clock distribution network, then
examine how the timing report changes:

dc_shell> set clock skew -uncertainty 2 CLK
dc_shell> report_timing

dc_shell> set clock skew -delay 1 CLK
dc_shell> report_timing

26

Lab 10.5: Synopsys

* Display the available operating conditions, then select the
one you can identify as being the worst case:
dc_shell> report lib gyh500

dc_shell> set operating conditions name
* Look at the timing report and see how it is affected:

dc_shell> report _timing

* Delete the current design and restart after compilation:

dc_shell> remove_design
dc_shell> read CONTROL.db

27

Lab 10.5: Synopsys

* Delete the current design and restart after compilation:

dc_shell> remove design
dc_shell> read CONTROL.db

* Constrain the design, using worst-case timing:

dc_shell> set operating conditions name

dc_shell> create clock -period 8 CLK

dc_shell> set 1nput delay 1.5 -clock CLK all _1nputs(Q)
dc_shell> set output delay 5 -clock CLK all _outputs()

* Compile the design. Did it meet its constraints?
dc_shell> compile

dc_shell> report _timing
28

Lab 10.5: Synopsys

* Write out a Verilog netlist:

dc_shell> write -format verilog -output gates.v

* You are done!
dc_shell> quit

29

Lab 10.5: Leonardo

e Start the graphical interface of Leonardo using the
following command:

% leonardo

* Read the design using the command:

LEONARDO: load library flex8
LEONARDO: read control.v

* Save the current state of the design by using the command:

LEONARDO: write -format verilog control orig.v

30

Lab 10.5: Leonardo

* Compile the design with no constraints, then examine the
final timing and area results:

LEONARDO: set attribute -port clk -name CLOCK _CYCLE -value 10
LEONARDO: optimize -target flex8 -area

LEONARDO: report _delay -critical _paths

LEOANRDO: report _area -cell _usage

* Add a model for the clock distribution network, then
examine how the timing report changes:

LEONARDO: set attribute -port CLK -name CLOCK OFFSET -value 2
LEONARDO: report delay -critical paths

33

Lab 10.5: Leonardo

* Write out a Verilog netlist:
LEONARDO: write -format verilog gates.v

®* You are done!
LEONARDO: quit

32

	Lab 10.1
	Lab 10.1
	Lab 10.1
	Lab 10.1
	Lab 10.2
	Lab 10.2
	Lab 10.2
	Lab 10.2
	Lab 10.2
	Lab 10.2: Optional
	Lab 10.3
	Lab 10.3
	Lab 10.3
	Lab 10.3
	Lab 10.4
	Lab 10.4
	Lab 10.4
	Lab 10.4
	Lab 10.4
	Lab 10.4
	Lab 10.4
	Lab 10.5
	Lab 10.5
	Lab 10.5
	Lab 10.5: Synopsys
	Lab 10.5: Synopsys
	Lab 10.5: Synopsys
	Lab 10.5: Synopsys
	Lab 10.5: Synopsys
	Lab 10.5: Leonardo
	Lab 10.5: Leonardo
	Lab 10.5: Leonardo

